
Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral
Interface (SPI)

23
HIGHLIGHTS
This section of the manual contains the following topics:

23.1 Introduction..23-2
23.2 Status and Control Registers...23-7
23.3 Modes of Operation ...23-16
23.4 Audio Protocol Interface Mode ..23-30
23.5 Interrupts..23-50
23.6 Operation in Power-Saving and Debug Modes ... 23-53
23.7 Effects of Various Resets...23-54
23.8 Peripherals Using SPI Modules...23-54
23.9 Related Application Notes ...23-55
23.10 Revision History...23-56
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-1

PIC32 Family Reference Manual
23.1 INTRODUCTION
The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for
communicating with external peripherals and other microcontroller devices. These peripheral
devices may be a serial EEPROM, shift register, display driver, Analog-to-Digital Converter
(ADC), or an audio codec. The PIC32 family SPI module is compatible with Motorola® SPI and
SIOP interfaces. Figure 23-1 shows a block diagram of the SPI module.

Some of the key features of this module are:

• Master and Slave modes support
• Four different clock formats
• Framed SPI protocol support
• Standard and Enhanced Buffering modes (Enhanced buffering mode is not available on all

devices)
• User-configurable 8-bit, 16-bit, and 32-bit data width
• SPI receive and transmit buffers are FIFO buffers, which are 4/8/16 deep in Enhanced

Buffering mode
• Programmable interrupt event on every 8-bit, 16-bit, and 32-bit data transfer
• Audio Protocol Interface mode
Some PIC32 devices support audio codec serial protocols such as Inter-IC Sound (I2S),
Left-Justified, Right-Justified, and PCM/DSP modes for 16, 24, and 32-bit audio data. Refer to
the specific device data sheet for availability of these features.

The SPIx serial interface consists of four pins:

• SDIx: Serial Data Input
• SDOx: Serial Data Output
• SCKx: Shift Clock Input or Output
• SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all PIC32 devices.

Please consult the note at the beginning of the “Serial Peripheral Interface (SPI)”
chapter in the current device data sheet to check whether this document supports
the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com

Table 23-1: SPI Features

Available
SPI Modes

SPI
Master

SPI
Slave

Frame
Master

Frame
Slave

8-bit,
16-bit, and

32-bit
Modes

Selectable
Clock
Pulses

and Edges

Selectable
Frame Sync
Pulses and

Edges

Slave
Select
Pulse

Normal Yes Yes — — Yes Yes — Yes
Framed Yes Yes Yes Yes Yes Yes Yes No

Table 23-2: SPI Features in Audio Protocol Interface Mode

Audio Protocol
Support

SPI
Master

SPI
Slave

16/24/32-bit
Data Format

32/64-bit
Frame

Overflow/
Underflow
Detection

Mono/
Stereo
Mode

Master Clock
(MCLK)
Support

I2S,
Left-Justified,
Right-Justified,
PCM/DSP

Yes Yes Yes Yes Yes Yes Yes

Note 1: This feature is not available in all devices. Refer to the specific device data sheet for availability.
DS61106G-page 23-2 © 2007-2011 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-1: SPI Module Block Diagram

Internal
Data Bus

SDIx

SDOx

SSx

SCKx

SPIxSR(2)

bit 0

Shift
Control

Edge
Select

Enable Master Clock

Baud Rate

Slave Select

 Sync Control

Clock
Control

Transmit

SPIxRXB(1)

Receive

 and Frame

Note 1: The SPIx Receive Buffer (SPIxRXB) and SPIx Transmit Buffer (SPIxTXB) registers are accessed via the
SPIxBUF register and are multi-element FIFO buffers in Enhanced Buffer mode (pointer arithmetic is circular
for these buffers). Enhanced Buffer mode is not available on all devices. Refer to the specific device data
sheet for availability.

2: The SPIx Shift Register (SPIxSR) is not directly accessible by application software.
3: When the CPU Read Pointer (CRPTR) is less than or equal to the SPI Write Pointer (SWPTR). The CRPTR

is incremented when the application reads a data element from the SPIxRXB register, and the SWPTR is
incremented when a data element is moved from the SPIxSR register to the SPIxRXB register.

4: The SPI Read Pointer (SRPTR) is less than or equal to the CPU Write Pointer (CWPTR). The CWPTR is
incremented when the application writes a new data element to the SPIxBUF register, and the SRPTR is
incremented when data is moved from the SPIxTXB register to the SPIxSR register.

Registers share address SPIxBUF

SPIxBUF

Generator

WriteRead

SPIxTXB(1)

PBCLK

MCLK

MCLKSEL

CWPTR(4)

SRPTR
SWPTR(3)

CRPTR
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-3

PIC32 Family Reference Manual
23.1.1 Normal Mode SPI Operation
In Normal mode operation, the SPI Master controls the generation of the serial clock. The
number of output clock pulses corresponds to the transfer data width: 8, 16, or 32 bits.
Figure 23-2 and Figure 23-3 illustrate SPI Master-to-Slave and Slave-to-Master device
connections.

Figure 23-2: Typical SPI Master-to-Slave Device Connection Diagram

Figure 23-3: Typical SPI Slave-to-Master Device Connection Diagram

SDOx

SDIx

PIC32

Serial Clock

Note 1: In Normal mode, the usage of the Slave Select pin (SSx) is optional.
2: Control of the SDOx pin can be disabled for Receive-Only modes.

GPIO/SSx

SCKx

Slave Select(1)

SDIx

SDOx(2)

PROCESSOR 2

SSx

SCKx

[SPI Master] [Slave]

SDOx(2)

SDIx

PIC32

Serial Clock

Note 1: In Normal mode, the usage of the Slave Select pin (SSx) is optional.
2: The control of the SDOx pin can be disabled for Receive-Only modes.

SSx

SCKx

Slave Select(1)

SDIx

SDOx

PROCESSOR 2

SSx/GPIO

SCKx

[SPI Slave] [Master]
DS61106G-page 23-4 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.1.2 Framed Mode SPI Operation
In Framed mode operation, the Frame Master controls the generation of the frame
synchronization pulse. The SPI clock is still generated by the SPI Master and is continuously
running. Figure 23-4 and Figure 23-5 illustrate SPI Frame Master and Frame Slave device
connections.

Figure 23-4: Typical SPI Master, Frame Master Connection Diagram

Figure 23-5: Typical SPI Master, Frame Slave Connection Diagram

SDOx

SDIx

PIC32

Serial Clock

Note 1: In Framed SPI mode, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI mode requires the use of all four pins (i.e., using the SSx pin is not optional).

SSx

SCKx

Frame Sync.
Pulse(1,2)

SDIx

SDOx

PROCESSOR 2

SSx

SCKx

[SPI Master, Frame Master] [SPI Slave, Frame Slave]

SDOx

SDIx

Serial Clock

Note 1: In Framed SPI mode, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI mode requires the use of all four pins (i.e., using the SSx pin is not optional).

SSx

SCKx

Frame Sync.

SDIx

SDOx

SSx

SCKx

PIC32
[SPI Master, Frame Slave]

PROCESSOR 2
[SPI Slave, Frame Master]

Pulse(1,2)
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-5

PIC32 Family Reference Manual
23.1.3 Audio Protocol Interface Mode

23.1.3.1 SPI IN AUDIO MASTER MODE CONNECTED TO A CODEC SLAVE

Figure 23-6 shows the Bit Clock (BCLK) and Left/Right Channel Clock (LRCK) as generated by
the PIC32 SPI module.

Figure 23-6: Master Generating its Own Clock – Output BCLK and LRCK

23.1.3.2 SPI IN AUDIO SLAVE MODE CONNECTED TO A CODEC MASTER

Figure 23-7 shows the BCLK and LRCK as generated by the codec master.

Figure 23-7: Codec Device as Master Generates Required Clock via External Crystal

SCKx (BCLK)

SSx (LRCK)

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Master]

Codec
[Slave]

Internal
Clock

SCK (BCLK)

SSx (LRCK)

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Slave]

Codec
[Master]
DS61106G-page 23-6 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.2 STATUS AND CONTROL REGISTERS

The SPI module consists of the following Special Function Registers (SFRs):

• SPIxCON: SPI Control Register
• SPIxCON2: SPI Control Register 2
• SPIxSTAT: SPI Status Register
• SPIxBUF: SPI Buffer Register
• SPIxBRG: SPI Baud Rate Register
Table 23-3 summarizes all SPI-related registers. Corresponding registers appear after the
summary, followed by a detailed description of each register.

Note: Each PIC32 family device variant may have one or more SPI modules. An ‘x’ used
in the names of pins, control/Status bits, and registers denotes the particular
module. Refer to the specific device data sheets for more details.

Table 23-3: SPI SFR Summary

Name Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

SPIxCON(1,2,3) 31:24 FRMEN FRMSYNC FRMPOL MSSEN(4) FRMSYPW(4) FRMCNT<2:0>(4)

23:16 MCLKSEL(4) — — — — — SPIFE ENHBUF(4)

15:8 ON — SIDL DISSDO MODE32 MODE16 SMP CKE

7:0 SSEN CKP MSTEN DISSDI(4) STXISEL<1:0>(4) SRXISEL<1:0>(4)

SPIxCON2(1,2,3,5) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 SPISGNEXT — — FRMERREN SPIROVEN SPITUREN IGNROV IGNTUR

7:0 AUDEN — — — AUDMONO — AUDMOD<1:0>

SPIxSTAT(1,2,3) 31:24 — — — RXBUFELM<4:0>(4)

23:16 — — — TXBUFELM<4:0>(4)

15:8 — — — FRMERR(4) SPIBUSY — — SPITUR

7:0 SRMT(4) SPIROV SPIRBE(4) — SPITBE — SPITBF(4) SPIRBF

SPIxBUF 31:24 DATA<31:24>

23:16 DATA<23:16>

15:8 DATA<15:8>

7:0 DATA<7:0>

SPIxBRG(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — BRG<12:8>(6)

7:0 BRG<7:0>(6)

Legend: — = unimplemented, read as ‘0’. Address offset values are shown in hexadecimal.
Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR appended to the

end of the register name (e.g., SPIxCONCLR). Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated
register. Reads from the Clear register should be ignored.

2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET appended to the end
of the register name (e.g., SPIxCONSET). Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated register.
Reads from the Set register should be ignored.

3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV appended to the
end of the register name (e.g., SPIxCONINV). Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated
register. Reads from the Invert register should be ignored.

4: This bit is not available on all devices. Refer to the specific device data sheet for details.
5: This register is not available on all devices. Refer to the specific data sheet for details.
6: Depending on the device, BRG can have up to 13 bits. Refer to the specific device data sheet for details.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-7

PIC32 Family Reference Manual
Register 23-1: SPIxCON: SPI Control Register
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

FRMEN FRMSYNC FRMPOL MSSEN(1,2) FRMSYPW(1) FRMCNT<2:0>(1)

23:16 R/W-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

MCLKSEL — — — — — SPIFE ENHBUF(1)

15:8 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

ON — SIDL DISSDO MODE32 MODE16 SMP CKE
7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSEN CKP MSTEN DISSDI STXISEL<1:0>(1,3) SRXISEL<1:0>(1,3)

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 FRMEN: Framed SPI Support bit
1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
0 = Framed SPI support is disabled

bit 30 FRMSYNC: Frame Sync Pulse Direction Control on SSx pin bit (Framed SPI mode only)
1 = Frame sync pulse input (Slave mode)
0 = Frame sync pulse output (Master mode)

bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
1 = Frame pulse is active-high
0 = Frame pulse is active-low

bit 28 MSSEN: Master Mode Slave Select Enable bit(1,2)

1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master
mode. Polarity is determined by the FRMPOL bit

0 = Slave select SPI support is disabled
bit 27 FRMSYPW: Frame Sync Pulse Width bit(1)

1 = Frame sync pulse is one word length wide, as defined by MODE<32,16> bits (SPIxCON<11:10>)
0 = Frame sync pulse is one clock wide

bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits
This bit controls the number of data characters transmitted per pulse(1).
111 = Reserved; do not use
110 = Reserved; do not use
101 = Generate a frame sync pulse on every 32 data characters
100 = Generate a frame sync pulse on every 16 data characters
011 = Generate a frame sync pulse on every 8 data characters
010 = Generate a frame sync pulse on every 4 data characters
001 = Generate a frame sync pulse on every 2 data characters
000 = Generate a frame sync pulse on every data character
This bit is only valid in Framed SPI mode (FRMEN = 1).

bit 23 MCLKSEL: Master Clock Select bit(2)

1 = MCLK is used by the Baud Rate Generator
0 = PBCLK is used by the Baud Rate Generator

bit 22-18 Unimplemented: Write ‘0’; ignore read

Note 1: These bits are not available on all devices. Refer to the specific device data sheet for availability.
2: When FRMEN = 1, the MSSEN bit is not used.
3: Valid only when enhanced buffers are enabled (ENHBUF = 1).
DS61106G-page 23-8 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
1 = Frame synchronization pulse coincides with the first bit clock
0 = Frame synchronization pulse precedes the first bit clock

bit 16 ENHBUF: Enhanced Buffer Enable bit(1)

1 = Enhanced Buffer mode is enabled
0 = Enhanced Buffer mode is disabled

bit 15 ON: SPI Peripheral On bit
1 = SPI Peripheral is enabled
0 = SPI Peripheral is disabled

When ON = 1, DISSDO and DISSDI are the only other bits that can be modified. When using the 1:1 PBCLK
divisor, the user’s software should not read or write the peripheral’s SFRs in the SYSCLK cycle immediately
following the instruction that clears the module’s ON bit.

bit 14 Unimplemented: Write ‘0’; ignore read
bit 13 SIDL: Stop in Idle Mode bit

1 = Discontinue operation when CPU enters in Idle mode
0 = Continue operation in Idle mode

bit 12 DISSDO: Disable SDOx pin bit
1 = SDOx pin is not used by the module (pin is controlled by associated PORT register)
0 = SDOx pin is controlled by the module

bit 11-10 MODE<32,16>: 32/16-bit Communication Select bits
When AUDEN = 1:
MODE32 MODE16 Communication

1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
0 1 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

When AUDEN = 0:
MODE32 MODE16 Communication

1 x 32-bit
0 1 16-bit
0 0 8-bit

bit 9 SMP: SPI Data Input Sample Phase bit
Master mode (MSTEN = 1):
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time

Slave mode (MSTEN = 0):
SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.

bit 8 CKE: SPI Clock Edge Select bit
1 = Serial output data changes on transition from active clock state to idle clock state (see CKP bit)
0 = Serial output data changes on transition from idle clock state to active clock state (see CKP bit)

The CKE bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed
SPI mode (FRMEN = 1).

bit 7 SSEN: Slave Select Enable (Slave mode) bit
1 = SSx pin used for Slave mode
0 = SSx pin not used for Slave mode, pin controlled by port function.

bit 6 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
0 = Idle state for clock is a low level; active state is a high level

Register 23-1: SPIxCON: SPI Control Register (Continued)

Note 1: These bits are not available on all devices. Refer to the specific device data sheet for availability.
2: When FRMEN = 1, the MSSEN bit is not used.
3: Valid only when enhanced buffers are enabled (ENHBUF = 1).
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-9

PIC32 Family Reference Manual
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode

bit 4 DISSDI: Disable SDI bit
1 = SDIx pin is not used by the SPI module (pin is controlled by PORT function)
0 = SDIx pin is controlled by the SPI module

bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits(1,3)

11 = SPIxTXIF is set when the buffer is not full (has one or more empty elements)
10 = SPIxTXIF is set when the buffer is empty by one-half or more
01 = SPIxTXIF is set when the buffer is completely empty
00 = SPIxTXIF is set when the last transfer is shifted out of SPISR and transmit operations are

complete
bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits(1,3)

11 = SPIxRXIF is set when the buffer is full
10 = SPIxRXIF is set when the buffer is full by one-half or more
01 = SPIxRXIF is set when the buffer is not empty
00 = SPIxRXIF is set when the last word in the receive buffer is read (i.e., buffer is empty)

Register 23-1: SPIxCON: SPI Control Register (Continued)

Note 1: These bits are not available on all devices. Refer to the specific device data sheet for availability.
2: When FRMEN = 1, the MSSEN bit is not used.
3: Valid only when enhanced buffers are enabled (ENHBUF = 1).
DS61106G-page 23-10 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Register 23-2: SPIxCON2: SPI Control Register 2
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0
31:24 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —
23:16 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —
15:8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0

SPISGNEXT — — FRMERREN SPIROVEN SPITUREN IGNROV IGNTUR
7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

AUDEN(1,3) — — — AUDMONO(2) — AUDMOD<1:0>(2,4)

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Write ‘0’; ignore read
bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit

1 = Data from RX FIFO is sign extended
0 = Data from RX FIFO is not sign extened

bit 14-13 Unimplemented: Write ‘0’; ignore read
bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit

1 = Frame Error overflow generates error interrupts
0 = Frame Error does not generate error interrupts

bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
1 = Receive overflow generates error interrupts
0 = Receive overflow does not generate error interrupts

bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
1 = Transmit Underrun generates error interrupts
0 = Transmit Underrun does not generate error interrupts

bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
0 = A ROV is a critical error which stop SPI operation

bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
0 = A TUR is a critical error which stop SPI operation

bit 7 AUDEN: Enable Audio CODEC Support bit(1,3)

1 = Audio protocol enabled
0 = Audio protocol disabled

bit 6-5 Unimplemented: Write ‘0’; ignore read

Note 1: This bit can only be written when the ON bit = 0.
2: This bit can only be written when the ON bit = 0, and is only valid for AUDEN = 1.
3: When Audio mode is enabled (i.e., AUDEN = 1), the following bits in the SPIxCON register are configured

by the module internally:
• The direction of the Bit Clock (BCLK) and Left/Right Channel Clock (LRCK) are selected based on the

MSTEN bit
• FRMEN = 1, FRMCNT = 1, SMP = 0
• In Slave mode (MSTN = 0, FRMSYNC = 1) and in Master mode MSTN = 1, FRMSYNC = 0

4: In I2S mode, SPIFE = 0, in Right or Left-Justified mode, SPIFE = 1, except in DSP/PCM mode when
FRMSYPW = 0.

5: This feature is not available on all devices. Refer to the specific device data sheet for availability.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-11

PIC32 Family Reference Manual
bit 3 AUDMONO: Transmit Audio Data Format bit(2)

1 = Audio data is mono (Each data word is transmitted on both left and right channels)
0 = Audio data is stereo

bit 2 Unimplemented: Write ‘0’; ignore read
bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit(2,4)

11 = PCM/DSP mode
10 = Right-Justified mode
01 = Left-Justified mode
00 = I2S mode(5)

Register 23-2: SPIxCON2: SPI Control Register 2 (Continued)

Note 1: This bit can only be written when the ON bit = 0.
2: This bit can only be written when the ON bit = 0, and is only valid for AUDEN = 1.
3: When Audio mode is enabled (i.e., AUDEN = 1), the following bits in the SPIxCON register are configured

by the module internally:
• The direction of the Bit Clock (BCLK) and Left/Right Channel Clock (LRCK) are selected based on the

MSTEN bit
• FRMEN = 1, FRMCNT = 1, SMP = 0
• In Slave mode (MSTN = 0, FRMSYNC = 1) and in Master mode MSTN = 1, FRMSYNC = 0

4: In I2S mode, SPIFE = 0, in Right or Left-Justified mode, SPIFE = 1, except in DSP/PCM mode when
FRMSYPW = 0.

5: This feature is not available on all devices. Refer to the specific device data sheet for availability.
DS61106G-page 23-12 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Register 23-3: SPIxSTAT: SPI Status Register
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24 U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0

— — — RXBUFELM<4:0>(1)

23:16 U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0

— — — TXBUFELM<4:0>(1)

15:8 U-0 U-0 U-0 R/C-0, HS R-0 U-0 U-0 R/C-0,HS

— — — FRMERR SPIBUSY — — SPITUR(1)

7:0 R-0 R/C-0,HS R-0 U-0 R-1 U-0 R-0 R-0

SRMT(12) SPIROV SPIRBE(1) — SPITBE — SPITBF(1) SPIRBF

Legend: C = Clearable bit HS = Set in Hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Write ‘0’; ignore read
bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1)(1)

Number of receive samples contained in the FIFO.
bit 23-21 Unimplemented: Write ‘0’; ignore read
bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (valid only when ENHBUF = 1)(1)

Number of transmit samples remaining in the FIFO.
bit 15-13 Unimplemented: Write ‘0’; ignore read
bit 12 FRMERR: SPI Frame Error status bit

1 = Frame error detected
0 = No Frame error detected

FRMERR is only valid when FRMEN = 1. This bit is only set by hardware. It can be cleared by writing a zero,
preferably with the command SPIxSTATCLR = 1<<12. It can also be cleared by disabling and re-enabling
the module using the SPIxCON.ON bit.

bit 11 SPIBUSY: SPI Activity Status bit
1 = SPI peripheral is currently busy with some transactions
0 = SPI peripheral is currently idle

bit 10-9 Unimplemented: Write ‘0’; ignore read
bit 8 SPITUR: Transmit Under Run bit(1)

1 = Transmit buffer has encountered an underrun condition
0 = Transmit buffer has no underrun condition
This bit is only valid in Framed Sync mode. This bit is only set by hardware. It can be cleared by writing a
zero, preferably with the command SPIxSTATCLR = 1<<8. It can also be cleared by disabling and
re-enabling the module using the SPIxCON.ON bit.

bit 7 SRMT: Shift Register Empty bit (valid only when ENHBUF = 1)(1)

1 = When SPI module shift register is empty
0 = When SPI module shift register is not empty

bit 6 SPIROV: Receive Overflow Flag bit
1 = A new data is completely received and discarded. The user software has not read the previous data in

the SPIxBUF register.
0 = No overflow has occurred
This bit is only set by hardware. It can be cleared by writing a zero, preferably with the command
SPIxSTATCLR = 1<<6. It can also be cleared by disabling and re-enabling the module using the
SPIxCON.ON bit.

Note 1: These bits are not available on all devices. Refer to the specific device data sheet for availability.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-13

PIC32 Family Reference Manual
bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1)
1 = RX FIFO is empty (CRPTR = SWPTR)
0 = RX FIFO is not empty (CRPTR < SWPTR)

bit 4 Unimplemented: Write ‘0’; ignore read

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit(1)

1 = Transmit buffer, SPIxTXB is empty
0 = Transmit buffer, SPIxTXB is not empty
Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

bit 2 Unimplemented: Write ‘0’; ignore read
bit 1 SPITBF: SPI Transmit Buffer Full Status bit(1)

1 = Transmit not yet started, SPITXB is full
0 = Transmit buffer is not full
Standard Buffer Mode:
Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB.
Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:
Set when there is no available space in the FIFO.

bit 0 SPIRBF: SPI Receive Buffer Full Status bit
1 = Receive buffer, SPIxRXB is full
0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:
Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB.
Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:
Set when there is no available space in the FIFO.

Register 23-3: SPIxSTAT: SPI Status Register (Continued)

Note 1: These bits are not available on all devices. Refer to the specific device data sheet for availability.
DS61106G-page 23-14 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Register 23-4: SPIxBUF: SPI Buffer Register
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<31:24>
23:16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<23:16>
15:8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<15:8>
7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DATA<31:0>: SPI Transmit/Receive Buffer register
Serves as a memory-mapped value of Transmit (SPIxTXB) and Receive (SPIxRXB) registers.

When 32-bit Data mode is enabled (MODE<32,16> (SPIxCON<11:10>) = 1x):
All 32 bits (SPIxBUF<31:0>) of this register are used to form a 32-bit character.

When 16-bit Data mode is enabled (MODE<32,16> (SPIxCON<11:10>) = 01):
Only the lower 16 bits (SPIxBUF<15:0>) of this register are used to form the 16-bit character.

When 8-bit Data mode is enabled (MODE<32,16> (SPIxCON<11:10>) = 00):
Only the lower 8 bits (SPIxBUF<7:0>) of this register are used to form the 8-bit character.

Register 23-5: SPIXBRG: SPI Baud Rate Register
Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

31:24 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —
23:16 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —
15:8 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — BRG<12:8>
7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

BRG<7:0>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Write ‘0’; ignore read
bit 12-0 BRG<12:0>: Baud Rate Divisor bits
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-15

PIC32 Family Reference Manual
23.3 MODES OF OPERATION
The SPI module offers the following operating modes:

• 8-bit, 16-bit, and 32-bit data transmission modes
• 8-bit, 16-bit, and 32-bit data reception modes
• Master and Slave modes
• Framed SPI modes
• Audio Protocol Interface mode

23.3.1 8-bit, 16-bit, and 32-bit Operation
The SPI module allows three types of data widths when transmitting and receiving data over an
SPI bus. The selection of data width determines the minimum length of SPI data. For example,
when the selected data width is 32, all transmission and receptions are performed in 32-bit
values. All reads and writes from the CPU are also performed in 32-bit values. Accordingly, the
application software should select the appropriate data width to maximize its data throughput.
Two control bits, MODE32 and MODE16 (SPIxCON<11:10>), which are referred to as
MODE<32,16>, define the mode of operation. To change the mode of operation on the fly, the
SPI module must be idle (i.e., not performing any transactions). If the SPI module is switched off
(SPIxCON<15> = 0), the new mode will be available when the module is again switched on.
Additionally, the following items should be noted in this context:

• The MODE<32,16> bits should not be changed when a transaction is in progress
• The first bit to be shifted out from SPIxSR varies with the selected mode of operation:

- 8-bit mode, bit 7
- 16-bit mode, bit 15
- 32-bit mode, bit 31

• In each mode, data is shifted into bit 0 of the SPIxSR
• The number of clock pulses at the SCKx pin are also dependent on the selected mode of

operation:
- 8-bit mode, 8 clocks
- 16-bit mode, 16 clocks
- 32-bit mode, 32 clocks

23.3.2 Buffer Modes
There are two SPI buffering modes: Standard and Enhanced.

23.3.2.1 STANDARD BUFFER MODE
The SPI Data Receive/Transmit Buffer (SPIxBUF) register is actually two separate internal
registers: the Transmit Buffer (SPIxTXB) and the Receive Buffer (SPIxRXB). These two
unidirectional registers share the SFR address of SPIxBUF.
When a complete byte/word is received, it is transferred from SPIxSR to SPIxRXB and the
SPIxRBF flag is set. If the software reads the SPIxBUF buffer, the SPIRBF bit is cleared.
As the software writes to SPIxBUF, the data is loaded into the SPIxTXB bit and the SPIxTBF bit
is set by hardware. As the data is transmitted out of SPIxSR, the SPIxTBF flag is cleared.
The SPI module double-buffers transmit/receive operations and allow continuous data transfers
in the background. Transmission and reception occur simultaneously in SPIxSR.

Note 1: In Framed SPI mode, these four pins are used: SDIx, SDOx, SCKx, and SSx.
2: If the Slave Select feature is used, all four pins listed in Note 1 are used.
3: If Standard SPI is used, but CKE = 1, enabling/using the Slave Select feature is

mandatory, and therefore, all four pins listed in Note 1 are used.
4: If Standard SPI is used, but DISSDO = 1, only two pins are used: SDIx and SCKx;

unless Slave Select is also enabled.
5: In all other cases, three pins are used: SDIx, SDOx, and SCKx.

Note: Enhanced Buffer mode is not available on all devices. Refer to the specific device
data sheet for details.
DS61106G-page 23-16 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.2.2 ENHANCED BUFFER MODE

The Enhanced Buffer Enable (ENHBUF) bit in the SPI Control (SPIxCON<16>) register can be
set to enable the Enhanced Buffer mode.
In Enhanced Buffer mode, two 128-bit FIFO buffers are used for the transmit buffer (SPIxTXB)
and the receive buffer (SPIxRXB). SPIxBUF provides access to both the receive and transmit
FIFOs and the data transmission and reception in the SPISR buffer in this mode is identical to
that in Standard Buffer mode. The FIFO depth depends on the data width chosen by the
Word/Half-Word Byte Communication Select (MODE<32,16>) bits in the SPI Control
(SPIxCON<11:10>) register. If the MODE field selects 32-bit data lengths, the FIFO is 4 deep, if
MODE selects 16-bit data lengths, the FIFO is 8 deep, or if MODE selects 8-bit data lengths the
FIFO is 16 deep.
The SPITBF status bit is set when all of the elements in the transmit FIFO buffer are full and is
cleared if one or more of those elements are empty. The SPIRBF status bit is set when all of the
elements in the receive FIFO buffer are full and is cleared if the SPIxBUF buffer is read by the
software.
The SPITBE status bit is set if all the elements in the transmit FIFO buffer are empty and is
cleared otherwise. The SPIRBE bit is set if all of the elements in the receive FIFO buffer are
empty and is cleared otherwise. The Shift Register Empty (SRMT) bit is valid only in Enhanced
Buffer mode and is set when the shift register is empty and cleared otherwise.
There is no underrun or overflow protection against reading an empty receive FIFO element or
writing a full transmit FIFO element. However, the SPIxSTAT register provides the Transmit
Underrun Status bit (SPITUR) and Receive Overflow Status bit (SPIROV), which can be
monitored along with the other status bits.
The Receive Buffer Element Count bits (RXBUFELM<4:0>) in the SPI Status
(SPIxSTAT<28:24>) register indicate the number of unread elements in the receive FIFO. The
Transmit Buffer Element Count bits (TXBUFELM<4:0>) in the SPI Status (SPIxSTAT<20:16>)
register indicate the number of elements not transmitted in the transmit FIFO.

23.3.3 Master and Slave Modes

Figure 23-8: SPI Master/Slave Connection Diagram

Serial Receive Buffer
(SPIxRXB)

Shift Register
(SPIxSR)

LSbMSb

SDIx

SDOx

PROCESSOR 2

SCKx

SSx(1)

Serial Transmit Buffer
(SPIxTXB)

Serial Receive Buffer
(SPIxRXB)(2)

Shift Register
(SPIxSR)

MSb LSb

SDOx

SDIx

PIC32

Serial Clock

SSEN (SPIxCON<7>) = 1 and
MSTEN (SPIxCON<5>) = 0

Note 1: Using the SSx pin in Slave mode of operation is optional.

2: User must write transmit data to SPIxBUF and read received data from SPIxBUF. The SPIxTXB and SPIxRXB
registers are memory mapped to SPIxBUF.

GPIO/SSx

SCKx

Serial Transmit Buffer
(SPIxTXB)(2)

MSTEN (SPIxCON<5>) = 1

SPI Buffer
(SPIxBUF)

SPI Buffer
(SPIxBUF)

[SPI Master] [SPI Slave]
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-17

PIC32 Family Reference Manual
23.3.3.1 MASTER MODE OPERATION

Perform the following steps to set up the SPI module for the Master mode operation:

1. Disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
5. If SPI interrupts are not going to be used, skip this step and continue to step 5. Otherwise

the following additional steps are performed:
a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

6. Write the Baud Rate register, SPIxBRG.
7. Clear the SPIROV bit (SPIxSTAT<6>).
8. Write the desired settings to the SPIxCON register with MSTEN (SPIxCON<5>) = 1.
9. Enable SPI operation by setting the ON bit (SPIxCON<15>).
10. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will

start as soon as data is written to the SPIxBUF register.

In Master mode, the PBCLK is divided and then used as the serial clock. The division is based
on the settings in the SPIxBRG register. The serial clock is output via the SCKx pin to slave
devices. Clock pulses are only generated when there is data to be transmitted; except when in
Framed mode, when clock is generated continuously. For further information, refer to 23.3.7 “SPI
Master Mode Clock Frequency”.

The Master Mode Slave Select Enable (MSSEN) bit in the SPI Control register (SPIxCON<28>)
can be set to automatically drive the slave select signal (SS) in Master mode. Clearing this bit
disables the slave select signal support in Master mode. The FRMPOL bit (SPIxCON<29>)
determines the polarity for the slave select signal in Master mode.

In devices that do not feature the MSSEN bit, the Slave Select signal (in non-Framed SPI mode)
must be generated by using the SSx pin or another general purpose I/O pin under software
control.

The CKP (SPIxCON<6>) and CKE (SPIxCON<8>) bits determine on which edge of the clock
data transmission occurs.

Both data to be transmitted and data that is received are written to, or read from, the SPIxBUF
register, respectively.

The following progression describes the SPI module operation in Master mode:

1. Once the module is set up for Master mode operation and enabled, data to be transmitted
is written to SPIxBUF register. The SPITBE bit (SPIxSTAT<3>) is cleared.

2. The contents of SPIxTXB are moved to the shift register, SPIxSR (see Figure 23-8), and
the SPITBE bit is set by the module.

3. A series of 8/16/32 clock pulses shifts 8/16/32 bits of transmit data from SPIxSR to the
SDOx pin and simultaneously shifts the data at the SDIx pin into SPIxSR.

Note: The SPI device must be turned off prior to changing the mode from Slave to Master.
(When using the Slave Select mode, the SSx or another GPIO pin is used to control
the slave’s SSx input. The pin must be controlled in software.)

Note: The MSSEN bit is not available on all devices. Refer to the specific device data
sheet for details. This bit should not be set the SPI Framed mode is enabled (i.e.,
FRMEN = 1).

Note: The user must turn off the SPI device prior to changing the CKE or CKP bits.
Otherwise, the behavior of the device is not guaranteed.
DS61106G-page 23-18 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
4. When the transfer is complete, the following events will occur:
a) The SPIxRXIF interrupt flag bit is set. SPI interrupts can be enabled by setting the

SPIxRXIE interrupt enable bit. The SPIxRXIF flag is not cleared automatically by the
hardware.

b) Also, when the ongoing transmit and receive operation is completed, the contents of
SPIxSR are moved to SPIxRXB.

c) The SPIRBF bit (SPIxSTAT<0>) is set by the module, indicating that the receive
buffer is full. Once SPIxBUF is read by the user code, the hardware clears the
SPIRBF bit. In Enhanced Buffer mode the SPIRBE bit (SPIxSTAT<5>) is set when
the SPIxRXB FIFO buffer is completely empty and cleared when not empty.

5. If the SPIRBF bit is set (the receive buffer is full) when the SPI module needs to transfer
data from SPIxSR to SPIxRXB, the module will set the SPIROV bit (SPIxSTAT<6>)
indicating an overflow condition.

6. Data to be transmitted can be written to SPIxBUF by the user software at any time, if the
SPITBE bit (SPIxSTAT<3>) is set. The write can occur while SPIxSR is shifting out the
previously written data, allowing continuous transmission. In Enhanced Buffer mode the
SPITBF bit (SPIxSTAT<1>) is set when the SPIxTXB FIFO buffer is completely full and
clear when it is not full.

Example 23-1: Initialization Code for 16-bit SPI Master Mode

Note: The SPIxSR register cannot be written to directly by the user. All writes to the
SPIxSR register are performed through the SPIxBUF register.

/*
The following code example will initialize the SPI1 in Master mode.
It assumes that none of the SPI1 input pins are shared with an analog input. If so, the
AD1PCFG and corresponding TRIS registers have to be properly configured.

*/
int rData;

IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1BRG=0x1; // use FPB/4 clock frequency
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON=0x8220; // SPI ON, 8 bits transfer, SMP=1, Master mode

// from now on, the device is ready to transmit and receive data
SPI1BUF=’A’; // transmit an A character
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-19

PIC32 Family Reference Manual
Figure 23-9: SPI Master Mode Operation in 8-bit Mode (MODE32 = 0, MODE16 = 0)

SCKx
(CKP = 0

SCKx
(CKP = 1

SCKx
(CKP = 0

SCKx
(CKP = 1

4 Clock modes

Input
Sample(2)

Input
Sample

SDIx(2)

bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7 bit 0
SDIx

SPIxRXIF

(SMP = 1)

(SMP = 0)

(SMP = 1)

CKE = 1)

CKE = 0)

CKE = 1)

CKE = 0)

(SMP = 0)

User writes
to SPIxBUF

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

(CKE = 0)

(CKE = 1)

approximately 2 sysclk latency to set
SPIxRXIF flag bit

Note 1: Four SPI Clock modes are shown here to demonstrate the functionality of bits CKP (SPIxCON<6>) and CKE
(SPIxCON<8>). Only one of the four modes can be chosen for operation.

2: The SDI and input samples shown here for two different values of the SMP bit (SPIxCON<9>) are strictly for
demonstration purposes. Only one of the two configurations of the SMP bit can be chosen during operation.

3: If there are no pending transmissions, SPIxTXB is transferred to SPIxSR as soon as the user writes to SPIxBUF.
4: Operation for 8-bit mode shown. 16-bit and 32-bit modes are similar.

SPIxSR moved
into SPIxRXB

 user reads
 SPIxBUF

(clock output
at the SCKx
 pin in Master
mode)(1)

(SPIxSTAT<0>)

 SPITBE

SPIxTXB to SPIxSR(3)
User writes new data
during transmission

SPIRBF

Two modes
available for
SMP control
bit(4)

SSx
DS61106G-page 23-20 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.3.2 SLAVE MODE OPERATION

The following steps are used to set up the SPI module for the Slave mode of operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
5. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

6. Clear the SPIROV bit (SPIxSTAT<6>).
7. Write the desired settings to the SPIxCON register with MSTEN (SPIxCON<5>) = 0.
8. Enable SPI operation by setting the ON bit (SPIxCON<15>).
9. Transmission (and reception) will start as soon as the master provides the serial clock.

In Slave mode, data is transmitted and received as the external clock pulses appear on the SCKx
pin. The CKP bit (SPIxCON<6>) and the CKE bit (SPIxCON<8>) determine on which edge of the
clock data transmission occurs.

Both data to be transmitted and data that is received are respectively written into or read from
the SPIxBUF register.

The rest of the operation of the module is identical to that in the Master mode including Enhanced
Buffer mode.

23.3.3.2.1 Slave Mode Additional Features
The following additional features are provided in the Slave mode:

• Slave Select Synchronization

The SSx pin allows a Synchronous Slave mode. If the SSEN bit (SPIxCON<7>) is set, trans-
mission and reception is enabled in Slave mode only if the SSx pin is driven to a low state.
The port output or other peripheral outputs must not be driven in order to allow the SSx pin
to function as an input. If the SSEN bit is set and the SSx pin is driven high, the SDOx pin is
no longer driven and will tri-state even if the module is in the middle of a transmission. An
aborted transmission will be retried the next time the SSx pin is driven low using the data
held in the SPIxTXB register. If the SSEN bit is not set, the SSx pin does not affect the
module operation in Slave mode.

• SPITBE Status Flag Operation

The SPITBE bit (SPIxSTAT<3>) has a different function in the Slave mode of operation. The
following describes the function of SPITBE for various settings of the Slave mode of
operation:

- If SSEN (SPIxCON<7>) is cleared, the SPITBE is cleared when SPIxBUF is loaded by
the user code. It is set when the module transfers SPIxTXB to SPIxSR. This is similar
to the SPITBE bit function in Master mode.

- If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. How-
ever, it is set only when the SPIx module completes data transmission. A transmission
will be aborted when the SSx pin goes high and may be retried at a later time. So,
each data Word is held in SPIxTXB until all bits are transmitted to the receiver.

Note: The SPI module must be turned off prior to changing the mode from Master to
Slave.

Note: Slave Select cannot be used when operating in Frame mode.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-21

PIC32 Family Reference Manual
Example 23-2: Initialization Code for 16-bit SPI Slave Mode

Figure 23-10: SPI Slave Mode Operation in 8-bit Mode with Slave Select Pin Disabled (MODE32 = 0,
MODE16 = 0, SSEN = 0)

/*
The following code example will initialize the SPI1 in Slave mode.
It assumes that none of the SPI1 input pins are shared with an analog input. If so, the
AD1PCFG and corresponding TRIS registers have to be properly configured.

*/
int rData;

IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1STATCLR=0x40; // clear the Overflow
SPI1CON=0x8000; // SPI ON, 8 bits transfer, Slave mode

// from now on, the device is ready to receive and transmit data

SCKx Input(1)
(CKP = 1

SCKx Input(1)
(CKP = 0

Input
Sample

SDIx Input

bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SPIxRXIF

(SMP = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

User writes to
SPIxBUF(2)

SPIxSR to
SPIxRXB

SPITBE

SPIRBF

Output

Note 1: Two SPI Clock modes are shown here only to demonstrate the functionality of bits CKP (SPIxCON<6>) and CKE
(SPIxCON<8>). Any combination of CKP and CKE bits can be chosen for module operation.

2: If there are no pending transmissions or a transmission is in progress, SPIxBUF is transferred to SPIxSR as soon
as the user writes to SPIxBUF.

3: Operation for 8-bit mode is shown. 16-bit and 32-bit modes are similar.

Approximately 2 SYSCLK latency to set
SPIxRXIF flag bit

(3)
DS61106G-page 23-22 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-11: SPI Slave Mode Operation in 8-bit Mode with Slave Select Pin Enabled (MODE32 = 0,
MODE16 = 0, SSEN = 1)

SCKx
(CKP = 1

SCKx
(CKP = 0

Input
Sample

SDIx
bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SPIxRXIF

(SMP = 0)

CKE = 0)

CKE = 0)

(SMP = 0)

User Writes

SPIxBUF

SPIxSR to
SPIxBUF

SSx(1)

Note 1: When the SSEN (SPIxCON<7>) bit is set to ‘1’, the SSx pin must be driven low so as to enable transmission and
reception in Slave mode.

2: Transmit data is held in SPIxTXB and SPITBE (SPIxSTAT<3>) remains clear until all bits are transmitted.
3: Operation for 8-bit mode is shown. 16-bit and 32-bit modes are similar.

SPIRBF

~2 SYSCLK
latency

SPITBE(2)

SPIxBUF
to
SPIxSR

to

(3)

L

SPIxBUF
User Reads
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-23

PIC32 Family Reference Manual
23.3.4 SPI Error Handling
When a new data word has been shifted into shift register SPIxSR and the previous contents of
receive register SPIxRXB have not been read by the user software, the SPIROV bit
(SPIxSTAT<6>) will be set. The module will not transfer the received data from SPIxSR to the
SPIxRXB. Further data reception is disabled until the SPIROV bit is cleared. The SPIROV bit is
not cleared automatically by the module and must be cleared by the user software.

23.3.5 SPI Receive-Only Operation
Setting the DISSDO control bit (SPIxCON<12>) disables transmission at the SDOx pin. This
allows the SPIx module to be configured for a Receive-Only mode of operation. The SDOx pin
will be controlled by the respective port function if the DISSDO bit is set.

The DISSDO function is applicable to all SPI operating modes.

23.3.6 Framed SPI Modes
The module supports a very basic framed SPI protocol while operating in either Master or Slave
modes. The following features are provided in the SPI module to support Framed SPI modes:

• The FRMEN control bit (SPIxCON<31>) enables Framed SPI mode and causes the SSx
pin to be used as a frame synchronization pulse input or output pin. The state of SSEN
(SPIxCON<7>) is ignored.

• The FRMSYNC control bit (SPIxCON<30>) determines whether the SSx pin is an input or
an output (i.e., whether the module receives or generates the frame synchronization pulse)

• The FRMPOL control bit (SPIxCON<29>) determines the frame synchronization pulse
polarity for a single SPI clock cycle.

• The FRMSYPW control bit (SPIxCON<27>) can be set to configure the width of the frame
synchronization pulse to one character wide

• The FRMCNT<2:0> control bits (SPIxCON<26:24>) can be set to configure the number of
data characters transmitted per frame synchronization pulse

The following Framed SPI modes are supported by the SPI module:

• Frame Master mode

The SPI module generates the frame synchronization pulse and provides this pulse to other
devices at the SSx pin

• Frame Slave mode

The SPI module uses a frame synchronization pulse received at the SSx pin.

The Framed SPI modes are supported in conjunction with the Master and Slave modes.
Therefore, the following Framed SPI Configurations are available:

• SPI Master mode and Frame Master mode
• SPI Master mode and Frame Slave mode
• SPI Slave mode and Frame Master mode
• SPI Slave mode and Frame Slave mode

These four modes determine whether or not the SPIx module generates the serial clock and the
frame synchronization pulse.

The ENHBUF bit (SPIxCON<16>) can be configured to use the Standard Buffering mode or
Enhanced Buffering mode in Framed SPI mode.

In addition, the SPI module can be used to interface to external audio DAC/ADC and codec
devices in Framed SPI mode.

Note: The FRMSYPW bit is not available on all devices. Refer to the specific device data
sheet for details.
DS61106G-page 23-24 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-12: SPI Master, Frame Master Connection Diagram

23.3.6.1 SCKx IN FRAMED SPI MODES

When FRMEN (SPIxCON<31>) = 1 and MSTEN (SPIxCON<5>) = 1, the SCKx pin becomes an
output and the SPI clock at SCKx becomes a free-running clock.

When FRMEN = 1 and MSTEN = 0, the SCKx pin becomes an input. The source clock provided
to the SCKx pin is assumed to be a free-running clock.

The polarity of the clock is selected by the CKP bit (SPIxCON<6>). The CKE bit (SPIxCON<8>)
is not used for the Framed SPI modes.

When CKP xor CKE = 0, the frame sync pulse output and the SDOx data output change on the
rising edge of the clock pulses at the SCKx pin. Input data is sampled at the SDIx input pin on
the falling edge of the serial clock.

When CKP xor CKE = 1, the frame sync pulse output and the SDOx data output change on the
falling edge of the clock pulses at the SCKx pin. Input data is sampled at the SDIx input pin on
the rising edge of the serial clock.

23.3.6.2 SPI BUFFERS IN FRAMED SPI MODES

When FRMSYNC (SPIxCON<30>) = 0, the SPIx module is in the Frame Master mode of
operation. In this mode, the frame sync pulse is initiated by the module when the user software
writes the transmit data to SPIxBUF location (thus writing the SPIxTXB register with transmit
data). At the end of the frame sync pulse, SPIxTXB is transferred to SPIxSR and data
transmission/reception begins.

When FRMSYNC = 1, the module is in Frame Slave mode. In this mode, the frame sync pulse
is generated by an external source. When the module samples the frame sync pulse, it will
transfer the contents of the SPIxTXB register to SPIxSR, and data transmission/reception
begins. The user must make sure that the correct data is loaded into the SPIxBUF for
transmission before the frame sync pulse is received.

Serial Receive Buffer
(SPIxRXB)(3)

Shift Register
(SPIxSR)

MSb LSb

SDOx

SDIx

PIC32

Serial Receive Buffer
(SPIxRXB)

Shift Register
(SPIxSR)

LSbMSb

SDIx

SDOx

PROCESSOR 2

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).
3: The SPIxTXB and SPIxRXB registers are memory mapped to the SPIxBUF register.

SCKx

SSxSSx

SCKx

Serial Transmit Buffer
(SPIxTXB)(3)

Serial Transmit Buffer
(SPIxTXB)

Frame Sync
Pulse(1,2)

SPI Buffer
(SPIxBUF)

SPI Buffer
(SPIxBUF)

[SPI Master, Frame Master] [SPI Slave, Frame Slave]

Note: Receiving a frame sync pulse will start a transmission, regardless of whether or not
data was written to SPIxBUF. If a write was not performed, zeros will be transmitted.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-25

PIC32 Family Reference Manual
23.3.6.3 SPI MASTER MODE AND FRAME MASTER MODE

This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON<5>) and the FRMEN bit
(SPIxCON<31>) to ‘1’, and the FRMSYNC bit (SPIxCON<30>) to ‘0’. In this mode, the serial
clock will be output continuously at the SCKx pin, regardless of whether the module is
transmitting. When SPIxBUF is written, the SSx pin will be driven active, high or low depending
on the FRMPOL bit (SPIxCON<29>), on the next transmit edge of the SCKx clock. The SSx pin
will be high for one SCKx clock cycle. The module will start transmitting data on the next transmit
edge of the SCKx, as shown in Figure 23-13. A connection diagram indicating signal directions
for this operating mode is shown in Figure 23-13.

Figure 23-13: SPI Master, Frame Master (MODE32 = 0, MODE16 = 1, SPIFE = 0,
FRMPOL = 1)

23.3.6.4 SPI MASTER MODE AND FRAME SLAVE MODE

This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON<5>), the FRMEN bit
(SPIxCON<31>), and the FRMSYNC bit (SPIxCON<30>) to ‘1’. The SSx pin is an input, and it
is sampled on the sample edge of the SPI clock. When it is sampled active, high or low depending
on the FRMPOL bit (SPIxCON<29>), data will be transmitted on the subsequent transmit edge
of the SPI clock, as shown in Figure 23-14. The interrupt flag SPIxIF is set when the transmission
is complete. The user must make sure that the correct data is loaded into SPIxBUF for
transmission before the signal is received at the SSx pin. A connection diagram indicating signal
directions for this operating mode is shown in Figure 23-15.

Figure 23-14: SPI Master, Frame Slave (MODE32 = 0, MODE16 = 1, SPIFE = 0,
FRMPOL = 1)

SCKx

SSx

SDOx

(CKP = 0)

bit 15 bit 14 bit 13 bit 12

SDIx

bit 15 bit 14 bit 13 bit 12

Write to SPIxBUF Receive Samples at SDIx
Pulse Generated at SSx

SCKx
(CKP = 1)

 Receive Samples at SDIx

SCK

FSYNC

SDO

(CKP = 0)

bit 15 bit 14 bit 13 bit 12

SDI

Sample SSx Pin
for Frame Sync Pulse

bit 15 bit 14 bit 13 bit 12

Write to
SPIxBUF

SCKx
(CKP = 1)
DS61106G-page 23-26 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-15: SPI Master, Frame Slave Connection Diagram

23.3.6.5 SPI SLAVE MODE AND FRAME MASTER MODE

This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON<5>) to ‘0’, the FRMEN
bit (SPIxCON<31>) to ‘1’, and the FRMSYNC bit (SPIxCON<30>) to ‘0’. The input SPI clock will
be continuous in Slave mode. The SSx pin will be an output when bit FRMSYNC is low. There-
fore, when SPIBUF is written, the module will drive the SSx pin active, high or low depending on
the FRMPOL bit (SPIxCON<29>), on the next transmit edge of the SPI clock. The SSx pin will
be driven high for one SPI clock cycle. Data transmission will start on the next SPI clock transmit
edge. A connection diagram indicating signal directions for this operating mode is shown in
Figure 23-16.

Figure 23-16: SPI Slave, Frame Master Connection Diagram

SDOx

SDIx

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame synchronization pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).

SSx

SCKx

Frame Sync

SDIx

SDOx

SSx

SCKx

PIC32
[SPI Master, Frame Slave]

PROCESSOR 2
[SPI Slave, Frame Master]

Pulse(1,2)

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame sync pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).

SDOx

SDIx

SSx

SCKx

PIC32
[SPI Slave, Frame Master]

SDIx

SDOx

SSx

SCKx

PROCESSOR 2
[SPI Master, Frame Slave]

Frame Sync
Pulse(1,2)
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-27

PIC32 Family Reference Manual
23.3.6.6 SPI SLAVE MODE AND FRAME SLAVE MODE

This Framed SPI mode is enabled by setting the MSTEN bit (SPIxCON<5>) to ‘0’, the FRMEN
bit (SPIxCON<31>) to ‘1’, and the FRMSYNC bit (SPIxCON<30>) to ‘1’. Therefore, both the
SCKx and SSx pins will be inputs. The SSx pin will be sampled on the sample edge of the SPI
clock. When SSx is sampled active, high or low depending on the FRMPOL bit (SPIxCON<29>),
data will be transmitted on the next transmit edge of SCKx. A connection diagram indicating
signal directions for this operating mode is shown in Figure 23-17.

Figure 23-17: SPI Slave, Frame Slave Connection Diagram

Serial Clock

Note 1: In Framed SPI modes, the SSx pin is used to transmit/receive the frame sync pulse.
2: Framed SPI modes require the use of all four pins (i.e., using the SSx pin is not optional).
3: Slave Select is not available when using Frame mode as a Slave device.

SDOx

SDIx

SSx

SCKx

PIC32
[SPI Slave, Frame Slave]

SDIx

SDOx

SSx

SCKx

PROCESSOR 2
[SPI Master, Frame Master]

Frame Sync
Pulse((1,2,3)
DS61106G-page 23-28 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.3.7 SPI Master Mode Clock Frequency
The SPI module allows flexibility in baud rate generation through the 9-bit SPIxBRG register.
SPIxBRG is readable and writable, and determines the baud rate. The peripheral clock PBCLK
provided to the SPI module is a divider function of the CPU core clock. This clock is divided based
on the value loaded into SPIxBRG. The SCKx clock obtained by dividing PBCLK is of 50% duty
cycle and it is provided to the external devices via the SCKx pin.

Equation 23-1 defines the SCKx clock frequency as a function of SPIxBRG settings.

Equation 23-1:

Therefore, the maximum baud rate possible is FPB/2 (SPIxBRG = 0), and the minimum baud rate
possible is FPB/1024.

Some sample SPI clock frequencies (in kHz) are shown in Table 23-4.

Note: The SCKx clock is not free running for non-framed SPI modes. It will only run for 8,
16, or 32 pulses when SPIxBUF is loaded with data. It will however, be continuous
for Framed modes.

Table 23-4: Sample SCKx Frequencies
SPIxBRG
Setting 0 15 31 63 85 127 255 511

FPB = 80 MHz 40.00
MHz

2.5
MHz

1.25
kHz

625
kHz

465.11
kHz

312.5
kHz

156.25
kHz

78.13
kHz

FPB = 72 MHz 36.00
MHz

2.25
MHz

1.13
kHz

562.5
kHz

418.60
kHz

281.25
kHz

140.63
kHz

70.31
kHz

FPB = 60 MHz 30.00
MHz

1.88
MHz

937.5
kHz

468.75
kHz

348.83
kHz

234.38
kHz

117.19
kHz

58.59
kHz

FPB = 50 MHz 25.00
MHz

1.56
MHz

781.25
kHz

390.63
kHz

290.7
kHz

195.31
kHz

97.66
kHz

48.83
kHz

FPB = 40 MHz 20.00
MHz

1.25
MHz

625.00
kHz

312.50
kHz

232.56
kHz

156.25
kHz

78.13
kHz

39.06
kHz

FPB = 25 MHz 12.50
MHz

781.25
kHz

390.63
kHz

195.31
kHz

145.35
kHz

97.66
kHz

48.83
kHz

24.41
kHz

FPB = 20 MHz 10.00
MHz

625.00
kHz

312.50
kHz

156.25
kHz

116.28
kHz

78.13
kHz

39.06
kHz

19.53
kHz

FPB = 10 MHz 5.00
MHz

312.50
kHz

156.25
kHz

78.13
kHz

58.14
kHz

39.06
kHz

19.53
kHz

9.77
kHz

Note: Not all clock rates are supported. For further information, refer to the SPI timing
specifications in the “Electrical Characteristics” chapter of the specific device
data sheet.

FSCK
FPB

2 SPIxBRG 1+()⋅
---=
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-29

PIC32 Family Reference Manual
23.4 AUDIO PROTOCOL INTERFACE MODE
The SPI module can be interfaced to most codec devices available today to provide PIC32
microcontroller-based audio solutions. The SPI module provides support to the audio protocol
functionality via four standard I/O pins. The four pins that make up the audio protocol interface
modes are:

• SDIx: Serial Data Input for receiving sample digital audio data (ADCDAT)
• SDOx: Serial Data Output for transmitting digital audio data (DACDAT)
• SCKx: Serial Clock, also known as bit clock (BCLK)
• SSx: Left/Right Channel Clock (LRCK)

BCLK provides the clock required to drive the data out or into the module, while LRCK provides
the synchronization of the frame based on the protocol mode selected.

In some codecs, Serial Clock (SCK) refers to the Baud/Bit Clock (BCLK). Throughout this
section, the signal SSx is to referred to as LRCK to be consistent with codec naming conventions.
The SPI module has the ability to function in Audio Protocol Master and Audio Protocol Slave
modes. In Master mode, the module generates both the BCLK on the SCKx pin and the LRCK
on the SSx pin. In certain devices, while in Slave mode, the module receives these two clocks
from its I2S partner, which is operating in Master mode.

While in Master mode, the SPI module has the ability to generate its own clock internally via the
Master Clock (MCLK) from various internal sources such as primary clock, PBCLK, USB clock,
FRC and other internal sources. In addition, the SPI module has the ability to provide the MCLK
to the codec device, which is a common requirement.

To start the Audio Protocol mode, first disable the peripheral by setting the ON bit
(SPIxCON<15>) = 0. Next, set the AUDEN bit (SPIxCON2<7>) = 1, and then re-enable the
peripheral by setting the ON bit = 1.

When configured in Master mode, the leading edge of SCK and the LRCK are driven out within
one SCK period of starting the audio protocol. Serial data is shifted in or out with timings
determined by the protocol mode set by the AUDMOD<1:0> bits (SPIxCON2<1:0>). If the
transmit FIFO is empty, zeros are transmitted.

In Slave mode, the peripheral drives zeros out SDO, but does not transmit the contents of the
transmit FIFO until it sees the leading edge of the LRCK, after which time starts receiving data
(provided SDI has not been disabled). It will continue to transmit zeros as long as the transmit
FIFO is empty.

While in Slave or Master mode, the SPI module does not generate an underrun on the TX FIFO
after start-up. This allows software to set up the SPI, set up the DMA, turn on the SPI’s audio
protocol, and then turn on the DMA without getting an error.

After the first write to the TX FIFO (SPIxBUF), the SPI enables underrun detection and
generation. To keep the RX FIFO empty until the DMA is enabled, set DISSDI = 1
(SPIxCON<4>). After enabling the DMA, set DISSDI = 0 to start receiving.

23.4.1 Master Mode
To configure the PIC32 device in Audio Protocol Master mode, set both the MSTEN bit
(SPIxCON<5>) and the AUDEN bit (SPIxCON2<7>) to ‘1’.

A few characteristics in Master mode are:

• This mode enables the device to generate SCK and LRCK pulses as long as the ON bit
(SPIxCON<15>) = 1

• The SPI module generates LRCK and SCK continuously in all the cases, regardless of the
transmit data while in Master mode

• The SPI module drives the leading edge of LRCK and SCK within 1 SCK period and the
serial data shifts in and out continuously even when the TX FIFO is empty

Figure 23-18 shows a typical interface between master and slave while in Master mode.
DS61106G-page 23-30 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Figure 23-18: Master Generating its Own Clock – Output BCLK and LRCK

23.4.2 Slave Mode
The SPI module can be configured in audio protocol slave mode by setting the MSTEN bit = 0
(SPIxCON<5>) and the AUDEN bit = 1 (SPIxCON2<7>)

A few characteristics in Slave mode are:

• This mode enables the device to receive SCK and LRCK pulses as long as the ON bit = 1
(SPIxCON<15>)

• The SPI module drives zeros out of SDO, but does not shift data out or in (SDI) until the
module receives the LRCK (i.e., the edge that precedes the left channel)

• Once the module receives the leading edge of LRCK, it starts receiving data if DISSDI = 0
(SPIxCON<4>) and the serial data shifts out continuously even when the TX FIFO is empty

Figure 23-19 shows the interface between a SPI module in Audio Slave Interface mode to a
codec master device.

Figure 23-19: Codec Device as Master Generates Required Clock via External Crystal

Figure 23-20 shows the interface between a SPI module in Audio Slave Interface mode to a
codec master device, in this the master clock is being derived from SPI reference clock out
function.

Figure 23-20: Codec Device as Master Derives MCLK from PIC32 Reference Clock Out

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Master]

Codec
[Slave]

Internal
Clock

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Slave]

Codec
[Master]

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Slave]

Codec
[Slave]

REFCLKO MCLKIN
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-31

PIC32 Family Reference Manual
23.4.3 Audio Data Length and Frame Length
While codec devices may generate audio data samples of various word lengths of 8/16/20/24/32,
the PIC32 SPI module supports transmit/receive audio data lengths of 16, 24, and 32.

Table 23-5 illustrates how the MODE<32,16> bits (SPIxCON<11:10>) control the maximum
allowable sample length and frame length (LRCK period on SSx).

Table 23-5: Audio Data Length versus LRCK Period

The parameters of the MODE<32,16> bits (SPIxCON<11:10>) have the following behavior:

• Controls Left/Right channel data length, frame length
• In 16-bit Sample mode, 32/64-bit frame length is supported
• In 24/32-bit Sample mode, 64-bit frame length is supported
• Defines FIFO width and depth (e.g., 24-bit data has a 32 bit wide and 4 location deep FIFO)
• If the written data is greater than the data selected, the upper bytes are ignored
• If the written data is less than the data selected, the FIFO pointers change on the write to

the Most Significant Byte (MSB) of the selected length
If this data is written to the transmit FIFO in more than one write, the write order must be from
least significant to most significant.

For example, assuming that audio data is 24 bits per sample with 8 bits available at a time.
According to Table 23-5, the FIFO width is 32 bits per sample. Therefore, the 8 Most Significant
bits (MSbs), bits 31:24, in each FIFO sample are ignored.

Bits 15:8 and 7:0 can be written to the SPIxBUF register in any order; however, bits 23:16 must
be written last, as writing the Most Significant bit (MSb), bit 24, triggers a change in the pointers
of the transmit buffer.

Data written to unused bytes is ignored. Also, transactions that are only to unused bytes are also
ignored. Therefore, a byte write to address offset 0x0023 is completely ignored and does not
cause a FIFO push if the data is less than 32 bits wide.

23.4.4 Frame Error/LRCK Errors
The SPI module provides detection of frame/LRCK errors for debugging. The frame/LRCK error
occurs when the LRCK edge that is defining a channel start happens before the correct number
of bits (as defined by MODE<32,16>).

The SPI module immediately sets the FRMERR bit (SPIxSTAT<12>), pushes data in from
SPIxSR register into the SPIxRXB register, and pops data from the SPIxTXB register into the
SPIxSR register. The module can be configured to detect frame/LRCK-related errors by setting
the FRMERREN bit (SPIxCON2<12>).

Note: Actual sample data can be any length, with a maximum of 32 bits, and the data must
be packed in one of three (16/24/32) formats.

SPIxCON<11:10>
Data

Length
(bits)

FIFO Width
(bits)

Left/Right
Channel
Sample
Length
(bits)

Enhanced
Buffer
FIFO
Depth

(samples)

LRCK
Period
Frame
Length
(bits)

MODE32 MODE16

0 0 16 16 ≤ 16 8 32
0 1 16 16 ≤ 32 8 64
1 1 24 32 ≤ 32 4 64
1 0 32 32 ≤ 32 4 64

Note: In Audio Protocol mode, both the BCLK (on the SCKx pin) and the LRCK (on the
SSx pin) are free running, meaning they are continuous. Normally, the LRCK is a
fixed number of BCLKs long. In all cases, the SPI module will realign to the new
frame edge and will set the FRMERR bit. If operating in a non-PCM mode, the SPI
module will also push the abbreviated data onto the FIFO when the frame is too
short.
DS61106G-page 23-32 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.5 Audio Protocol Modes
The SPI module supports four audio protocol modes and can be operated in any one of these
modes:

• I2S mode (not available on all devices; refer to the specific device data sheet for availability)
• Left-Justified mode
• Right-Justified mode
• PCM/DSP mode

These audio protocol modes can be enabled by configuring the AUDMOD<1:0> bits
(SPIxCON2<1:0>). These modes enable communication to different types of codecs and control
the edge relationships of LRCK and SDI/SDO with respect to SCK.

With respect to data transmit, in all of the protocol modes, the MSB is first transmitted followed
by MSB-1, and so on, until the Least Significant Byte (LSB) transmits. The length of the data is
discussed in 23.4.3 “Audio Data Length and Frame Length”. If there are SCK periods left over
after the LSb is transmitted, zeros are sent to fill up the frame.

When in Slave mode, the relationship between the BCLK (on the SCKx pin) and the period (or
frame length) of the LRCK (on the SSx pin) is far less constrained than that of Master mode. In
Master mode, the frame length equals 32 or 64 BCLKs depending on the MODE<32,16> bit
(SPIxCON<11:10>) settings. However, in Slave mode, the frame length can be greater than or
equal to 32 or 64 BCLKs, but the FRMERR bit (SPIxSTAT<12>) will be set if the frame LRCK
edge arrives early.

Figure 23-21 illustrates the general interface between the codec device and the SPI module in
audio mode.

Figure 23-21: SPI Module in Audio Slave Mode – BCLK and WS or LRCK Generated by
Master

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Slave]

Codec
[Master]
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-33

PIC32 Family Reference Manual
23.4.5.1 I2S MODE

The Inter-IC Sound (I2S) protocol enables transmission of two channels of digital audio data over
a single serial interface. The I2S protocol defines a 3-wire interface that handles the stereo data
using the WS/LRCK line. The I2S specification defines a half-duplex interface that supports
transmit or receive, but not both at the same time. With both SDO and SDI available, full-duplex
operation is supported by this peripheral, as shown in Figure 23-22.

• Data Transmit and Clocking:
- The transmitter shifts the audio sample data’s MSb on the first falling edge of SCK

after an LRCK transition
- The receiver samples the MSB on the second rising edge of SCK
- The left channel data shifts out while LRCK is low and right channel data is shifted out

while LRCK is high
- The data in the left and right channel consists of a single frame

• Required Configuration Settings:
To set the module to I2S mode, the following bits must be set:
- AUDMOD<1:0> = 00 (SPIxCON2<1:0>)
- FRMPOL = 0 (SPIxCON<29>)
- CKP = 1 (SPIxCON<6>)

Setting these bits enables the SDO and LRCK (SSx) transitions to occur on the falling edge of
SCK (BCLK) and sampling of SDI to occur on the rising edge of SCK. Refer to the diagrams
shown in Figure 23-22.

Figure 23-22: I2S with 16-bit Data/Channel or 32-bit Data/Channel

Note: This feature is not available on all devices. Refer to the specific device data sheet
for availability.

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb MSb-1 LSbLSb+1 MSb MSb-1 LSb+1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample
Left Channel LSb

SampleTransmit
Right Channel LSb
DS61106G-page 23-34 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.5.1.1 I2S Audio Slave Mode of Operation
Use the following steps to set up the SPI module for the I2S Audio Slave mode of operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTAT<6>).
8. Write the desired settings to the SPIxCON2 register.

a) AUDMOD<1:0> bits (SPIxCON2<1:0>) = 00
b) AUDEN bit (SPIxCON2<7>) = 1

9. Write the desired settings to the SPIxCON register:
a) MSTEN (SPIxCON<5>) = 0
b) CKP (SPIxCON<6>) = 1
c) MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
d) Enable SPI operation by setting the ON bit (SPIxCON<15>).

10. Transmission (and reception) will start as soon as the master provides the BCLK and
LRCK.

Example 23-3: I2S Slave Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in I2S Slave mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000080; // I2S Mode, AUDEN = 1, AUDMON = 0
SPI1CON =0x00008040; // Slave mode, SPI ON, CKP = 1, 16-bit audio data, 32 bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-35

PIC32 Family Reference Manual
23.4.5.1.2 I2S Audio Master Mode of Operation
A typical application could be to play PCM data (8 kHz sample frequency, 16-bit data, 32-bit
frame size) when interfaced to a codec slave device. In this case, the SPI module is initialized to
generate BCLK @ 256 kbps. Assuming a 40 MHz peripheral bus clock, FPB = 40e6, the baud
rate would be determined using Equation 23-2.

Equation 23-2:

Solving for the value of SPIxBRG is shown in Equation 23-3.

Equation 23-3:

The Baud Rate is now equal to 256e3. Equation 23-4 shows the resulting calculation.

Equation 23-4:

If the result of Equation 23-4 is rounded to the nearest integer, SPIxBRG is now equal to 77;
therefore, the effective Baud Rate is that of Equation 23-5.

Equation 23-5:

The result is 0.16% too fast; however, this is well within most system tolerances (0.16% is exactly
1/625). On certain devices, this error can be removed using the REFOTRIM register to provide
a master clock output at the exact frequency needed.

The following steps can be used to set up the SPI module for operation in I2S Audio Master
mode:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Reset the baud rate register, SPIxBRG.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, perform these additional steps:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTAT<6>).
9. Write the desired settings to the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘00’ for I2S mode and the AUDEN bit (SPIxCON2<7>)
must be set to ‘1’ to enable the audio protocol.

10. Set the SPIxBRG baud rate register to 0x4D (to generate approximately 256 kbps sample
rate, with PBCLK @ 40 MHz).

Baud Rate
FPB

2 SPIxBRG 1+()⋅
---=

SPIxBRG
FPB

2 Baud Rate()
--------------------------------- 1–=

SPIxBRG 40e6
2 256e3()
----------------------- 1 77.125=–=

40e6
2 77 1+()⋅
------------------------------ 40e6

156
------------ 256410.25 bits per second= =
DS61106G-page 23-36 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
11. Write the desired settings to the SPIxCON register:
a) MSTEN (SPIxCON<5>) = 1.
b) CKP (SPIxCON<6>) = 1.
c) MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
d) Enable SPI operation by setting the ON bit (SPIxCON<15>).

12. Transmission (and reception) will start immediately after the ON bit is set.

Example 23-4: I2S Master Mode, 256 kbps BCLK, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in I2S Master mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
SPI1BRG=0; // Reset Baud rate register
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000080; // I2S Mode, AUDEN = 1, AUDMON = 0
SPI1BRG =0x4D; //(to generate 256 kbps sample rate, PBCLK @ 40 MHz)
SPI1CON =0x00008060; // Master mode, SPI ON, CKP = 1, 16-bit audio channel

// data, 32 bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-37

PIC32 Family Reference Manual
23.4.5.2 LEFT-JUSTIFIED MODE

The Left-Justified mode is similar to I2S mode; however, in this mode, the SPI shifts the audio
data’s MSb on the first SCK edge that is coincident with an LRCK transition. On the receiver side,
the SPI module samples the MSb on the next SCK edge.

In general, a codec using justified protocols defaults to transmitting data on the rising edge of
SCK and receiving data on the falling edge of SCK.

• Required configuration settings

To set the module to Left-Justified mode, the following bits must to be set

- AUDMOD<1:0> = 01 (SPIxCON2<1:0>)
- FRMPOL = 1 (SPIxCON<29>)
- CKP = 0 (SPIxCON<6>)

This enables the SDO and LRCK transitions to occur on the rising edge of SCK. Refer to the
sample waveform diagrams shown in Figure 23-23 and Figure 23-24 for 16, 24, 32-bit audio data
transfers.

Figure 23-23: Left-Justified with 16-bit Data/Channel or 32-bit Data/Channel

Figure 23-24: Left-Justified with 16/24-bit Data and 32-bit Channel

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb MSb-1 LSbLSb+1 MSb MSb-1 LSb+1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb LSb MSb LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

00 0 0
DS61106G-page 23-38 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.5.2.1 Left-Justified Audio Slave Mode Operation
Use the following steps to set up the SPI module for the Left-Justified Audio Slave mode of
operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTAT<6>).
8. Write the desired settings in the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘01’ for Left-Justified mode and the AUDEN bit
(SPIxCON2<7>) must be set to ‘1’ to enable the audio protocol.

9. Write the desired settings to the SPIxCON register:
a) Set to Slave mode, MSTEN (SPIxCON<5>) = 0.
b) Set clock polarity, CKP (SPIxCON<6>) = 0.
c) Set frame polarity, FRMPOL (SPIxCON<29>) = 1.
d) Set MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data
e) Enable SPI operation by setting the ON bit (SPIxCON<15>).

10. Transmission (and reception) will start as soon as the master provides the BCLK and
LRCK.

Example 23-5: Left-Justified Slave Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in Left-Justified Slave mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000081; // Left-Justified Mode, AUDEN = 1, AUDMON = 0
SPI1CON =0x20008000; // Slave mode, SPI ON, CKP = 0, FRMPOL = 1,
 // 16-bit audio data, 32 bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-39

PIC32 Family Reference Manual
23.4.5.2.2 Left-Justified Audio Master Mode Operation
Use the following steps to set up the SPI module for the Left-Justified Audio Master mode of
operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Reset the baud rate register, SPIxBRG.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTAT<6>).
9. Write the desired settings in the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘01’ for Left-Justified and the AUDEN bit
(SPIxCON2<7>) must be set to ‘1’ to enable the audio protocol.

10. Set the SPIxBRG baud rate register to 0x4D (to generate approximately 256 kbps sample
rate, with PBCLK @ 40 MHz)

11. Write the desired settings to the SPIxCON register:
a) Set to Master mode, MSTEN (SPIxCON<5>) = 1.
b) Set clock polarity, CKP (SPIxCON<6>) = 0.
c) Set frame polarity, FRMPOL (SPIxCON<29>) = 1.
d) Set MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
e) Enable SPI operation by setting the ON bit (SPIxCON<15>).

12. Transmission (and reception) will start immediately after the ON bit is set.

Example 23-6: Left-Justified Master Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in Left-Justified Master mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1
SPI1CON2 = 0; // Reset audio settings
SPI1BRG = 0;
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000081; // Left-Justified Mode, AUDEN = 1, AUDMON = 0
SPI1BRG =0x4D; // (to generate 256 kbps sample rate, PBCLK @ 40 MHz)
SPI1CON =0x20008040; // Master mode, SPI ON, CKP = 0, FRMPOL = 1, MSTEN = 1

// 16-bit audio data, 32 bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
DS61106G-page 23-40 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.5.3 RIGHT-JUSTIFIED MODE

In Right-Justified mode, the SPI module shifts the audio sample data’s MSb after aligning the
data to the last clock cycle. The bits preceding the audio sample data can be driven to logic level
0 by setting the DISSDO bit (SPIxCON<12>) to ‘0’. When DISSDO = 0, the module ignores the
unused bit slot.

• Required configuration:

To set the module to Right-Justified mode, the following bits must to be set:

- AUDMOD<1:0> (SPIxCON2<1:0>) = 10
- FRMPOL (SPIxCON<29>) = 1
- CKP (SPIxCON<6>) = 0

This enables the SDO and LRCK transitions to occur on the rising edge of SCK after the LSb
being aligned to the last clock cycle. Refer to the sample waveform diagrams shown in
Figure 23-25 and Figure 23-26 for 16, 24, 32-bit audio data transfers.

Figure 23-25: Right-Justified with 16-bit Data/Channel or 32-bit Data/Channel

Figure 23-26: Right-Justified with 16/24-bit Data and 32-bit Channel

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb MSb-1 LSbLSb+1 MSb MSb-1 LSb+1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb LSb MSb LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

00 0 0
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-41

PIC32 Family Reference Manual
23.4.5.3.1 Right-Justified Audio Slave Mode Operation
Use the following steps to set up the SPI module for the Right-Justified Audio Slave mode of
operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, perform the following steps:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTAT<6>).
8. Write the desired settings in the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘10’ for Right-Justified mode and the AUDEN bit
(SPIxCON2<7>) must be set to ‘1’ to enable the audio protocol.

9. Write the desired settings to the SPIxCON register:
a) Set to slave mode, MSTEN (SPIxCON<5>) = 0.
b) Set clock polarity, CKP (SPIxCON<6>) = 0.
c) Set frame polarity, FRMPOL (SPIxCON<29> = 1.
d) Set MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
e) Enable SPI operation by setting the ON bit (SPIxCON<15>).

10. Transmission (and reception) will start as soon as the master provides the BCLK and
LRCK.

Example 23-7: Right-Justified Slave Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in Right-Justified Slave mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON=0; // Stops and resets the SPI1.
SPI1CON2=0; // Reset audio settings
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000082; // Right-Justified Mode, AUDEN = 1, AUDMON = 0
SPI1CON=0x20008000; // Slave mode, SPI ON, CKP = 0, FRMPOL = 1,

// 16-bit audio data, 32 bits per frame
 // DISSDO = 0, transmit unused bit slots with logic level 0
 // DISSDI = 0, receiver to ignore the unused bit slots

// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
DS61106G-page 23-42 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.5.3.2 Right-Justified Audio Master Mode Operation
Use the following steps to set up the SPI module for the Right-Justified Audio Master mode of
operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Reset the baud rate register, SPIxBRG.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTAT<6>).
9. Write the desired settings in the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘10’ for Right-Justified mode and the AUDEN bit
(SPIxCON2<7>) must be set to ‘1’ to enable the audio protocol.

10. Set the SPIxBRG baud rate register to 0x4D (to generate approximately 256 kbps sample
rate, with PBCLK @ 40 MHz).

11. Write the desired settings to the SPIxCON register:
a) Set to master mode, MSTEN (SPIxCON<5>) = 1.
b) Set clock polarity, CKP (SPIxCON<6>) = 0.
c) Set frame polarity, FRMPOL (SPIxCON<29>) = 1.
d) Set MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
e) Enable SPI operation by setting the ON bit (SPIxCON<15>).

12. Transmission (and reception) will start immediately after the ON bit is set.

Example 23-8: Right-Justified Master Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in Right-Justified Master mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
SPI1BRG=0;
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000082; // Right-Justified Mode, AUDEN =1, AUDMON=0
SPI1BRG =0x4D; // (to generate 256 kbps sample rate, PBCLK @ 40 MHz)
SPI1CON =0x20008020; // Master mode, SPI ON, CKP = 0, FRMPOL = 1, MSTN = 1

// 16-bit audio data, 32 bits per frame
 // DISSDO = 0, transmit unused bit slots with logic level 0
 // DISSDI = 0, receiver to ignore the unused bit slots

// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-43

PIC32 Family Reference Manual
23.4.5.4 PCM/DSP MODE

The PCM/DSP protocol mode is available for communication with some codecs and certain DSP
devices. This mode modifies the behavior of LRCK and audio data spacing. In PCM/DSP mode,
the LRCK can be a single bit wide (i.e., 1 SCK) or as wide as the audio data (16, 24, 32 bits). The
audio data is packed in the frame with the left channel data immediately followed by the right
channel data. The frame length is still either 32 or 64 clocks when this device is the master.

In PCM/DSP mode, the transmitter drives the audio data’s (left channel) MSb on the first or
second transmit edge (see the SPIFE bit (SPIxCON<17>)) of SCK (after an LRCK transition).
Immediately after the (left channel) LSb, the transmitter drives the (right channel) MSb.

• Required configuration settings:

To set the module to Left-Justified mode, the following bit must to be set:

- AUDMOD<1:0> bits (SPIxCON2<1:0>) = 11

Refer to the sample waveform diagrams shown in Figure 23-27 and Figure 23-28 for 16, 24,
32-bit audio data transfers.

Figure 23-27: PCM/DSP with 16-bit Data/Channel or 32-bit Data/Channel

Figure 23-28: PCM/DSP with 16/24-bit Data and 32-bit Channel

(FRMSYPW = 1)

SCKx (BCLK)

SDOx/SDIx MSb MSb-1 LSbLSb+1 MSb MSb-1 LSb+1 LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

SSx (LRCK)
(FRMSYPW = 0)

LEFT CHANNEL RIGHT CHANNELSSx (LRCK)

(SPIFE = 1)

SSx (LRCK)

SCKx (BCLK)

SDOx/SDIx MSb LSb MSb LSb

LEFT CHANNEL RIGHT CHANNEL

Transmit Sample SampleTransmit

0 00

SSx (LRCK) LEFT CHANNEL RIGHT CHANNEL

(FRMSYPW = 1)

(FRMSYPW = 0)

0

(SPIFE = 0)
DS61106G-page 23-44 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.5.4.1 PCM/DSP Audio Slave Mode of Operation
Use following steps to set up the SPI module for the PCM/DSP Audio Slave mode of operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Clear the receive buffer.
5. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
6. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

7. Clear the SPIROV bit (SPIxSTAT<6>).
8. Write the desired setting in the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘11’ for DSP/PCM mode and the AUDEN bit
(SPIxCON2<7>) must be set to ‘1’ to enable Audio protocol

9. Write the desired settings to the SPIxCON register:
a) Set to slave mode, MSTEN (SPIxCON<5>) = 0.
b) Set MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
c) Enable SPI operation by setting the ON bit (SPIxCON<15>).

10. Transmission (and reception) will start as soon as the master provides the BCLK and
LRCK.

Example 23-9: PCM/DSP Slave Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in PCM/DSP Slave Mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

 unsigned int rData;
 IEC0CLR=0x03800000; // disable all interrupts

SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000083; // PCM/DSP Slave Mode, AUDEN = 1, AUDMON = 0
SPI1CON =0x00008000; // Slave mode, SPI ON, FRMSYPW = 0
 // 16-bit audio data, 32 bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-45

PIC32 Family Reference Manual
23.4.5.4.2 PCM/DSP Audio Master Mode of Operation
Use the following steps to set up the SPI module for the PCM/DSP Audio Master mode of
operation:

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register SPI, CON2.
4. Reset the baud rate register, SPIxBRG.
5. Clear the receive buffer.
6. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
7. If using interrupts, perform the following steps:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.

8. Clear the SPIROV bit (SPIxSTAT<6>).
9. Write the desired settings in the SPIxCON2 register. The AUDMOD<1:0> bits

(SPIxCON2<1:0>) must be set to ‘11’ for DSP/PCM mode and the AUDEN bit
(SPIxCON<7>) must be set to ‘1’ to enable the audio protocol.

10. Set the SPIxBRG baud rate register to 0x4D (to generate approximately 256 kbps sample
rate, with PBCLK @ 40 MHz).

11. Write the desired settings to the SPIxCON register:
a) Set to Master mode, MSTEN (SPIxCON<5>) = 1.
b) Set MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
c) Enable SPI operation by setting the ON bit (SPIxCON<15>).

12. Transmission (and reception) will start immediately after the ON bit is set.

Example 23-10: PCM/DSP Master Mode, 16-bit Channel Data, 32-bit Frame
/* The following code example will initialize the SPI1 Module in PCM/DSP Master Mode. */
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

 unsigned int rData;
 IEC0CLR=0x03800000; // disable all interrupts

SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000083; // PCM/DSP Master Mode, AUDEN =1, AUDMON=0
SPI1BRG =0x4D; // (to generate 256 kbps sample rate, PBCLK @ 40 MHz)
SPI1CON =0x00008020; // Master mode, SPI ON, FRMSYPW = 0
 // 16-bit audio data, 32 bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/
DS61106G-page 23-46 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.4.6 Audio Protocol Mode Features

23.4.6.1 BCLK/SCK AND LRCK GENERATION

BCLK and LRCK generation is a key requirement in Master mode. The frame frequency of SCK
and LRCK is defined by the MODE<32,16> bits (SPIxCON<11:10>). When the frame is 64 bits,
SCK is 64 times the frequency of LRCK. Similarly, when the frame is 32 bits, SCK is 32 times the
frequency of LRCK. The frequency of SCK must be derived from the toggling rate of LRCK and
the frame size.

For example, to sample a 16-bit channel data at 8 kHz with PBCLK = 36.864 MHz, set the
SPIxBRG register to ‘0x47’ to generate an 8 kHz LRCK.

23.4.6.2 MASTER MODE CLOCKING AND MCLK

The SPI module as a master has the ability to generate BCLK and LRCK by internally generating
using PBCLK (MCLKSEL = 0). The SPI module can generate the clock for external codec
devices using the reference output REFCLKO function (see Figure 23-29), although some
codecs may have the ability to generate their own MCLK from a crystal to provide accurate audio
sample rates. Figure 23-30 shows that the REFCLKO clock can be used as MCLKIN by the
codec.

Figure 23-29: SPI Master Clock Generation

For more information on reference clock output interface refer to the specific device data sheet.

Figure 23-30 shows the interface between a SPI slave and a codec master, deriving the clock
from the MCLK input interface.

Figure 23-30: SPI Slave and Codec Master – Clock Derived from MCLK

Baud Rate
Generator BCLK

USB-PLL
SOSC

LPRC
FRC

POSC

PBCLK

System Clock

MCLK

MCLKSELR
eference

C
lock O

utput

REFCLKO

SCKx

SSx

SDIx

SDOx

BCLK

LRCK

ADCDAT

DACDAT

PIC32
[SPI Slave]

Codec
[Master]

REFCLKO MCLKIN
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-47

PIC32 Family Reference Manual
23.4.6.2.1 I2S Audio Master Mode of Operation Using REFCLKO
The following steps can be used to set up the SPI module for the I2S Audio Master mode of
operation with MCLK enabled. The SPI module is initialized to generate BCLK @ 256 kbps and
MCLK is derived from PBCLK using the reference oscillator output configuration register. A
typical application could be to play PCM data (8 kHz sample frequency, 16-bit data, 32-bit frame)
when interfaced to a codec slave device.

1. If using interrupts, disable the SPI interrupts in the respective IECx register.
2. Stop and reset the SPI module by clearing the ON bit (SPIxCON<15>).
3. Reset the SPI audio configuration register, SPIxCON2.
4. Reset the reference oscillator controller register, REFOCON.
5. Reset the baud rate register, SPIxBRG.
6. Clear the receive buffer.
7. Clear the ENHBUF bit (SPIxCON<16>) if using Standard Buffer mode or set the bit if using

Enhanced Buffer mode.
8. If using interrupts, the following additional steps are performed:

a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.
d) Clear the SPIROV bit (SPIxSTAT<6>).

9. Write the desired settings in the SPIxCON2 register. The AUDMOD<1:0> bits
(SPIxCON2<1:0>) must be set to ‘00’ for I2S mode and the AUDEN bit (SPIxCON2<7>)
must be set to ‘1’ to enable the audio protocol.

10. Set the reference oscillator controller register, REFOCON:
a) RODIV<14:0> (REFOCON<30:16>) = 0.
b) ON (REFOCON<15>) = 1, reference oscillator enabled.
c) OE (REFOCON<4>) = 1, output enabled.

11. Set the SPIxBRG baud rate register to 0x4D (to generate approximately 256 kbps sample
rate, with PBCLK @ 40 MHz).

12. Write the desired settings to the SPIxCON register with
a) MSTEN (SPIxCON<5>) = 1.
b) CKP (SPIxCON<6>) = 1.
c) MODE<32,16> (SPIxCON<11:10>) = 0 for 16-bit audio channel data.
d) MCLKSEL (SPIxCON<23>) = 1, master mode.
e) Enable SPI operation by setting the ON bit (SPIxCON<15>).

13. Transmission (and reception) will start as soon as the master provides the BCLK and
LRCK.
DS61106G-page 23-48 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Example 23-11: I2S Master Mode, 256 kbps BCLK, 16-bit Channel Data, 32-bit Frame

23.4.7 Mono Mode versus Stereo Mode
The SPI module enables the audio data transmission in Mono or Stereo mode by setting the
AUDMONO bit (SPIxCON2<3>). When the AUDMONO bit is set to ‘0’ (Stereo mode), the shift
register uses each FIFO location once, which gives each channel a unique stream of data for
stereo data. When the AUDMONO bit is set to ‘1’ (Mono mode), the shift register uses each FIFO
location twice, to give each channel the same mono stream of audio data.

23.4.8 Streaming Data Support and Error Handling
Most of audio streaming applications transmit or receive data continuously. This is required to
keep the channel active during the period of operation, and guarantees best possible accuracy.
Due to streaming audio, the data feeds could be bursty or packet loss can occur causing the
module to encounter situations like underrun. The software needs to be involved to recover from
an underrun.
The Ignore Transmit Underrun (IGNTUR) bit (SPIxCON2<8>), when set to a ‘1’, ignores an
underrun condition. This is helpful for cases when software does not care or does not need to
know about underrun conditions. When an underrun is encountered, the SPI module sets the
SPITUR bit (SPIxSTAT<8>) when SPITUREN = 1 (SPIxCON2<10>), and remains in an error
state until the software clears the state or the ON bit = 0 (SPIxCON<15>).
During the underrun condition, the SPI module loads the SPIxSR register with zeros instead of
data from the SPIxTXB register, and the module continues to transmit zeros. When the error
condition is cleared (i.e., when the SPIxTXB register is not empty), the SPI module loads the
audio data from the transmit buffer into the SPIxSR register on the next LRCK frame boundary
and software must make sure that the left and right audio data is always transferred to the FIFO
in pairs.
The Ignore Receive Overflow (IGNROV) bit (SPIxCON2<9>), when set to a ‘1’, ignores a receive
overflow condition. This is useful when there is a general performance problem in the system that
software must handle properly. An alternate method to handle the receive overflow is by setting
the DISSDI bit = 1 (SPIxCON<4>) when the system does not need to receive audio data.
Changing the DISSDI bit on-the-fly and the receive shift register starts a receive on the leading
LRCK edge.

/* The following code example will initialize the SPI1 Module in I2S Slave mode.
/* It assumes that none of the SPI1 input pins are shared with an analog input. */

unsigned int rData;
IEC0CLR=0x03800000; // disable all interrupts
SPI1CON = 0; // Stops and resets the SPI1.
SPI1CON2 = 0; // Reset audio settings
REFOCON = 0x0; // Reset reference oscillator register
SPI1BRG=0; // Reset Baud rate register
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL = 3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1STATCLR=0x40; // clear the Overflow
SPI1CON2=0x00000080; // I2S Mode, AUDEN =1, AUDMON=0
SPI1BRG =0x4D; // (to generate 256 kbps sample rate, PBCLK @ 40 MHz)
REFOCON = 0x8001; // ON = 1, ROSEL = 1 for PBCLK
SPI1CON =0x00808060; // MCLKSEL = 1, MSTEN = 1, ON = 1, CKP = 1, 16-bit audio channel

// data, 32-bits per frame
// from here, the device is ready to receive and transmit data

/* Note: A few of bits related to frame settings are not required to be set in the SPI1CON */
/* register during audio mode operation. Please refer to the notes in the SPIxCON2 register.*/

Note: The use of a reference clock output to generate MCLK for the codec may not be a
perfect choice. Driving a clock out to an I/O pad induces jitter that may degrade
audio fidelity of the codec. The best solution is for the codec to use a crystal and be
the master I2S/Audio device.

Note: Receive data is not affected by AUDMONO bit settings.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-49

PIC32 Family Reference Manual
23.5 INTERRUPTS
The SPI module has the ability to generate interrupts reflecting the events that occur during the
data communication. The following types of interrupts can be generated:

• Receive data available interrupts are signalled by SPI1RXIF and SPI2RXIF. This event
occurs when there is new data assembled in the SPIxBUF receive buffer.

• Transmit buffer empty interrupts are signalled by SPI1TXIF and SPI2TXIF. This event occurs
when there is space available in the SPIxBUF transmit buffer and new data can be written.

• Error interrupts are signalled by SPI1EIF and SPI2EIF. This event occurs when there is an
overflow condition for the SPIxBUF receive buffer (i.e., new receive data assembled but the
previous one not read), when there is an underrun of the transmit buffer, or when a FRMERR
event occurs.

All of these interrupt flags, which must be cleared in software, are located in the IFSx registers.
Refer to the specific device data sheet for more information.

To enable the SPI interrupts, use the respective SPI interrupt enable bits, SPIxRXIE, SPIxTXIE,
and SPIxFIE, in the corresponding IECx registers.

The interrupt priority level bits and interrupt subpriority level bits must be also be configured using
the SPIxIP and SPIxIS bits in the corresponding IPCx registers.

When using Enhanced Buffer mode, the SPI Transmit Buffer Empty Interrupt Mode bits
(STXISEL<1:0>) in the SPI Control (SPIxCON<3:2>) register can be used to configure the
operation of the transmit buffer empty interrupts when the buffer is not full, empty by one-half or
more, completely empty, or when the last transfer is shifted out.

Similarly, when using Enhanced Buffer mode, the SPI Receive Buffer Full Interrupt Mode bits
(SRXISEL<1:0>) in the SPI Control (SPIxCON<1:0>) register can be used to configure the
generation of receive buffer full interrupts when the buffer is full, full by one-half or more, is not
empty, or when the last word is read.

Refer to Section 8. “Interrupts” (DS61108) for further details.

23.5.1 Interrupt Configuration
Each SPI module has three dedicated interrupt flag bits: SPIxEIF, SPIxRXIF, and SPIxTXIF, and
corresponding interrupt enable/mask bits SPIxEIE, SPIxRXIE, and SPIxTXIE. These bits are
used to determine the source of an interrupt, and to enable or disable an individual interrupt
source. Note that all the interrupt sources for a specific SPI module share one interrupt vector.
Each SPI module can have its own priority level independent of other SPI modules.

SPIxTXIF is set when the SPI transmit buffer is empty and another character can be written to
the SPIxBUF register. SPIxRXIF is set when there is a received character available in SPIxBUF.
SPIxEIF is set when a Receive Overflow condition occurs.

Note that the SPIxTXIF, SPIxRXIF, and SPIxEIF bits will be set without regard to the state of the
corresponding enable bit. The interrupt flag bits can be polled by software if desired.

The SPIxEIE, SPIxTXIE, SPIxRXIE bits are used to define the behavior of the Interrupt Controller
when a corresponding SPIxEIF, SPIxTXIF, or SPIxRXIF bit is set. When the corresponding
interrupt enable bit is clear, the Interrupt Controller does not generate a CPU interrupt for the
event. If the interrupt enable bit is set, the Interrupt Controller will generate an interrupt to the
CPU when the corresponding interrupt flag bit is set (subject to the priority and subpriority as
outlined below).

It is the responsibility of the user’s software routine that services a particular interrupt to clear the
appropriate interrupt flag bit before the service routine is complete.

The priority of each SPI module can be set independently with the SPIxIP<2:0> bits. This priority
defines the priority group to which the interrupt source will be assigned. The priority groups range
from a value of 7 (the highest priority), to a value of 0 (which does not generate an interrupt). An
interrupt being serviced will be preempted by an interrupt in a higher priority group. The individual
sources of error interrupts are controlled by the FRMERREN, SPIROVEN, and SPITUREN bits
in the SPIxCON2 register.

Note: Enhanced Buffer mode is not available on all devices. Refer to the specific device
data sheet for details.
DS61106G-page 23-50 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
The subpriority bits allow setting the priority of an interrupt source within a priority group. The
values of the subpriority SPIxIS<1:0> range from 3 (the highest priority) to 0, the lowest priority.
An interrupt within the same priority group but having a higher subpriority value will not preempt
a lower subpriority interrupt that is in progress.

The priority group and subpriority bits allow more than one interrupt source to share the same
priority and subpriority. If simultaneous interrupts occur in this configuration the natural order of
the interrupt sources within a Priority/subpriority group pair determine the interrupt generated.
The natural priority is based on the vector numbers of the interrupt sources. The lower the vector
number the higher the natural priority of the interrupt. Any interrupts that were overridden by
natural order will then generate their respective interrupts based on Priority, subpriority, and
natural order, after the interrupt flag for the current interrupt is cleared.

After an enabled interrupt is generated, the CPU will jump to the vector assigned to that interrupt.
The vector number for the interrupt is the same as the natural order number. The CPU will then
begin executing code at the vector address. The user’s code at this vector address should
perform any application-specific operations required, and clear interrupt flags SPIxEIF,
SPIxTXIF, or SPIxRXIF, and then exit. Refer to the vector address table details in the Section 8.
“Interrupts” (DS61108) for more information on interrupts.

Example 23-12: SPI Initialization with Interrupts Enabled Code Example

Example 23-13: SPI1 ISR Code Example

For devices with Enhanced Buffering mode, the user application should clear the interrupt
request flag after servicing the interrupt condition.

If an SPI interrupt has occurred, the ISR should read the SPI Data Buffer (SPIxBUF) register, and
then clear the SPI interrupt flag, as shown in Example 23-14.

/*
The following code example illustrates an SPI1 interrupt configuration.
When the SPI1 interrupt is generated, the cpu will jump to the vector assigned to SPI1
interrupt.
It assumes that none of the SPI1 input pins are shared with an analog input. If so, the
AD1PCFG and corresponding TRIS registers have to be properly configured.

*/

int rData;

IEC0CLR=0x03800000; // disable all SPI interrupts
SPI1CON = 0; // Stops and resets the SPI1.
rData=SPI1BUF; // clears the receive buffer
IFS0CLR=0x03800000; // clear any existing event
IPC5CLR=0x1f000000; // clear the priority
IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1
IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

SPI1BRG=0x1; // use FPB/4 clock frequency
SPI1STATCLR=0x40; // clear the Overflow
SPI1CON=0x8220; // SPI ON, 8 bits transfer, SMP=1, Master mode

/*
The following code example demonstrates a simple interrupt service routine for SPI1
interrupts. The user’s code at this vector should perform any application specific operations
and must clear the SPI1 interrupt flags before exiting.

*/

void __ISR(_SPI_1_VECTOR, ipl3)__SPI1Interrupt(void)
{

// ... perform application specific operations in response to the
// interrupt

IFS0CLR = 0x03800000; // Be sure to clear the SPI1 interrupt flags
// before exiting the service routine.

}

© 2007-2011 Microchip Technology Inc. DS61106G-page 23-51

PIC32 Family Reference Manual
Example 23-14: SPI1 ISR Code Example for Devices with Enhanced Buffering Mode
/*

The following code example demonstrates a simple interrupt service routine for SPI1
interrupts. The user’s code at this vector should perform any application specific operations
and must clear the SPI1 interrupt flags before exiting.

*/

void __ISR(_SPI_1_VECTOR, ipl3)__SPI1Interrupt(void)
{

int Data; // Read SPI data buffer
Data = SPI1BUF;

// ... perform application specific operations in response to the
// interrupt

IFS0CLR = 0x03800000; // Be sure to clear the SPI1 interrupt flags
// before exiting the service routine.

}

Note: The SPI1 ISR code examples show MPLAB® C32 C compiler specific syntax. Refer
to your compiler manual regarding support for ISRs.
DS61106G-page 23-52 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.6 OPERATION IN POWER-SAVING AND DEBUG MODES

23.6.1 Sleep Mode
When the device enters Sleep mode, the system clock is disabled. The exact SPI module
operation during Sleep mode depends on the current mode of operation. The following
subsections describe mode-specific behavior.

23.6.1.1 MASTER MODE IN SLEEP MODE

The following items should be noted in Sleep mode:

• The Baud Rate Generator is stopped and may be reset (check the device data sheet).
• On-going transmission and reception sequences are aborted. The module may not resume

aborted sequences when Sleep mode is exited. (Again, check the device data sheet.)
• Once in Sleep mode, the module will not transmit or receive any new data

23.6.1.2 SLAVE MODE IN SLEEP MODE

In the Slave mode, the SPI module operates from the SCK provided by an external SPI Master.
Since the clock pulses at SCKx are externally provided for Slave mode, the module will continue
to function in Sleep mode. It will complete any transactions during the transition into Sleep. On
completion of a transaction, the SPIRBF flag is set. Consequently, bit SPIxRXIF will be set. If SPI
interrupts are enabled (SPIxRXIE = 1) and the SPI interrupt priority level is greater than the
present CPU priority level, the device will wake from Sleep mode and the code execution will
resume at the SPIx interrupt vector location. If the SPI interrupt priority level is lower than or equal
to the present CPU priority level, the CPU will remain in Idle mode.

The module is not reset on entering Sleep mode if it is operating as a slave device. Register
contents are not affected when the SPIx module is going into or coming out of Sleep mode.

23.6.2 Idle Mode
When the device enters Idle mode, the system clock sources remain functional.

23.6.2.1 MASTER MODE IN IDLE MODE

Bit SIDL (SPIxCON<13>) selects whether the module will stop or continue functioning in Idle
mode.

• If SIDL = 1, the module will discontinue operation in Idle mode. The module will perform the
same procedures when stopped in Idle mode that it does for Sleep mode.

• If SIDL = 0, the module will continue operation in Idle mode

23.6.2.2 SLAVE MODE IN IDLE MODE

The module will continue operation in Idle mode irrespective of the SIDL setting. The behavior is
identical to the one in Sleep mode.

23.6.3 Debug Mode

23.6.3.1 OPERATION OF SPIxBUF

23.6.3.1.1 Reads During Debug Mode
During Debug mode, SPIxBUF can be read; but the read operation does not affect any Status
bits. For example, if the SPIRBF bit (SPIxSTAT<0>) is set when Debug mode is entered, it will
remain set on EXIT From Debug mode, even though the SPIxBUF register was read in Debug
mode.

Note: To prevent unintentional abort of transmit and receive sequences, you may need to
wait for the current transmission to be completed before activating Sleep mode.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-53

PIC32 Family Reference Manual
23.7 EFFECTS OF VARIOUS RESETS

23.7.1 Device Reset
All SPI registers are forced to their Reset states upon a device Reset. When the asynchronous
Reset input goes active, the SPI logic:

• Resets all bits in SPIxCON and SPIxSTAT
• Resets the transmit and receive buffers (SPIxBUF) to the empty state
• Resets the Baud Rate Generator

23.7.2 Power-on Reset
All SPI registers are forced to their reset states when a Power-on Reset occurs.

23.7.3 Watchdog Timer Reset
All SPI registers are forced to their reset states when a Watchdog Timer Reset occurs.

23.8 PERIPHERALS USING SPI MODULES
There are no other peripherals using the SPI module.
DS61106G-page 23-54 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
23.9 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32 device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the SPI module are:

Title Application Note #
Interfacing Microchip’s MCP41XXX/MCP42XXX Digital Potentiometers
to a PIC® Microcontroller AN746

Interfacing Microchip’s MCP3201 Analog-to-Digital Converter
to the PIC® Microcontroller

AN719

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32 family of devices.
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-55

http://www.microchip.com
http://www.microchip.com

PIC32 Family Reference Manual
23.10 REVISION HISTORY

Revision A (July 2007)
This is the initial released version of this document.

Revision B (October 2007)
Revised Examples 23-1, 23-2, 23-3; Table 23-5.

Revision C (October 2007)
Updated document to remove Confidential status.

Revision D (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision E (June 2008)
Added Footnote number to Registers 12-17; Revised Example 23-4; Revised Figure 23-8;
Change Reserved bits from “Maintain as” to “Write”; Added Note to ON bit (SPIxCON Register).

Revision F (August 2009)
This revision includes the following changes:

• Minor changes to the text and formatting have been incorporated through the document
• Updated register introductions in 23.2 “Status and Control Registers”
• Register Summary (Table 23-2)

- Removed references to the Clear, Set, Invert, IFS0, IFS1, IEC0, IEC1, IPC5, and IPC7
registers

- Added the Address Offset column
- Added Notes 1, 2, and 3, which describe the Clear, Set, and Invert registers
- Added these bits: MSSEN, FRMSYPW, FRMCNT<2:0>, ENHBUF, STXISEL<1:0>,

SRXISEL<1:0>, RXBUFELM<4:0>, SPITUR, SRMT, SPIRBE, AND SPITBF
• Removed the IFS0, IFS1, IEC0, IEC1, IPC5, and IPC7 registers
• Added Notes describing the Clear, Set, and Invert registers to the following registers:

- SPIxCON
- SPIxSTAT
- SPIxBRG

• Added SPIxBRG settings for 60, 72, and 80 MHz in the Sample SCKx Frequencies table
(see Table 23-3)

• Removed SPI Interrupt Vectors for Various Offsets table (Table 23-4)
• Added 23.3.2 “Buffer Modes”
• Added a paragraph that provides details on the MSSEN bit in 23.3.3.1 “Master Mode

Operation”
• Added two bullets that provide details on the FRMSYPW and FRMCNT bits in 23.3.6

“Framed SPI Modes”
• Added two paragraphs that provide details on the STXISEL<1:0> and SRXISEL<1:0> bits

in 23.4 “Interrupts”
• Added a paragraph on SPI1 ISR for devices with Enhanced Buffering mode after

Example 23-4 in 23.4.1 “Interrupt Configuration”
• Added SPI1 ISR Code Example for Devices With Enhanced Buffering mode (see

Example 23-5).
• Removed 23.8 “I/O Pin Control”
DS61106G-page 23-56 © 2007-2011 Microchip Technology Inc.

Section 23. Serial Peripheral Interface (SPI)
Serial Peripheral

Interface (SPI)

23
Revision G (October 2011)
This revision includes the following updates:

• Added a note box that references companion documentation and updated the SPI module
feature list (see 23.1 “Introduction”)

• Added SPI Features in Audio Protocol Interface Mode (see Table 23-2)
• Updated the SPI Module Block Diagram (see Figure 23-1)
• The following updates were made to the SPI Control register (see Register 23-1)

- Added Note 5
- Updated the Note for bits 26-24 (FRMCNT<2:0>)
- Updated the definitions for bits 3-2 (STXISEL<2:0>)
- Replaced all occurrences of SPI_TBE_EVENT and SPI_RBF_EVENT with SPIxTXIF

and SPIxRXIF, respectively
- Updated the bit values for the MODE32 and MODE16 bits (SPIxCON<11:10>)

• Added the SPIxCON2 register and the MCLKSEL, DISSDI and FRMERR bits (see
Table 23-3, Register 23-1, and Register 23-2)

• Added note references to the CLR, SET, and INV registers to the SPI Status register (see
Table 23-3 and Register 23-3)

• Updated the bit value definitions for the SRMT bit in the SPI Status register (see bit 7 in
Register 23-3)

• Added a note box referencing pin usage to 23.3 “Modes of Operation”
• Updated the Sample SCKx Frequencies (see Table 23-4)
• Swapped sub-steps b) and c) in the Master mode operation sequence (see

23.3.3.1 “Master Mode Operation”)
• Added a new paragraph on the MSSEN bit after the second note box in 23.3.3.1 “Master

Mode Operation”. In addition, the text in the second note box was updated.
• Added a new paragraph on the MSSEN bit
• Added the SSx pin to the SPI Master Mode Operation in 8-bit Mode timing diagram (see

Figure 23-7)
• Swapped sub-steps b) and c) in the Slave mode operation sequence (see 23.3.3.2 “Slave

Mode Operation”)
• Added a new paragraph that references additional interface options just before

Figure 23-12 (see 23.3.6 “Framed SPI Modes”)
• Added section 23.4 “Audio Protocol Interface Mode”
• Updated the bit name and register references in the bulleted items of 23.5 “Interrupts”
• All sections, with the exception of 23.6.3.1 “Operation of SPIxBUF” were removed in

23.6.3 “Debug Mode”
• The section 23.9 “Design Tips” was removed
• References to LRC were updated to LRCK throughout the document
• All Untested Code watermarks were removed from the code examples
• Formatting updates and minor typographical changes have been made throughout the

document
© 2007-2011 Microchip Technology Inc. DS61106G-page 23-57

PIC32 Family Reference Manual
NOTES:
DS61106G-page 23-58 © 2007-2011 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2007-2011 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2011, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-689-1
DS61106G-page 23 -59

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS61106G-page 23 -60 © 2007-2011 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/02/11

http://support.microchip.com
http://www.microchip.com

	Section 23. Serial Peripheral Interface (SPI)
	23.1 Introduction
	Table 23-1: SPI Features
	Table 23-2: SPI Features in Audio Protocol Interface Mode
	Figure 23-1: SPI Module Block Diagram
	23.1.1 Normal Mode SPI Operation
	Figure 23-2: Typical SPI Master-to-Slave Device Connection Diagram
	Figure 23-3: Typical SPI Slave-to-Master Device Connection Diagram

	23.1.2 Framed Mode SPI Operation
	Figure 23-4: Typical SPI Master, Frame Master Connection Diagram
	Figure 23-5: Typical SPI Master, Frame Slave Connection Diagram

	23.1.3 Audio Protocol Interface Mode
	Figure 23-6: Master Generating its Own Clock – Output BCLK and LRCK
	Figure 23-7: Codec Device as Master Generates Required Clock via External Crystal

	23.2 Status and Control Registers
	Table 23-3: SPI SFR Summary
	Register 23-1: SPIxCON: SPI Control Register (Continued)
	Register 23-2: SPIxCON2: SPI Control Register 2 (Continued)
	Register 23-3: SPIxSTAT: SPI Status Register (Continued)
	Register 23-4: SPIxBUF: SPI Buffer Register
	Register 23-5: SPIxBRG: SPI Baud Rate Register

	23.3 Modes of Operation
	23.3.1 8-bit, 16-bit, and 32-bit Operation
	23.3.2 Buffer Modes
	23.3.3 Master and Slave Modes
	Figure 23-8: SPI Master/Slave Connection Diagram
	Example 23-1: Initialization Code for 16-bit SPI Master Mode
	Figure 23-9: SPI Master Mode Operation in 8-bit Mode (MODE32 = 0, MODE16 = 0)
	Example 23-2: Initialization Code for 16-bit SPI Slave Mode
	Figure 23-10: SPI Slave Mode Operation in 8-bit Mode with Slave Select Pin Disabled (MODE32 = 0, MODE16 = 0, SSEN = 0)
	Figure 23-11: SPI Slave Mode Operation in 8-bit Mode with Slave Select Pin Enabled (MODE32 = 0, MODE16 = 0, SSEN = 1)

	23.3.4 SPI Error Handling
	23.3.5 SPI Receive-Only Operation
	23.3.6 Framed SPI Modes
	Figure 23-12: SPI Master, Frame Master Connection Diagram
	Figure 23-13: SPI Master, Frame Master (MODE32 = 0, MODE16 = 1, SPIFE = 0, FRMPOL = 1)
	Figure 23-14: SPI Master, Frame Slave (MODE32 = 0, MODE16 = 1, SPIFE = 0, FRMPOL = 1)
	Figure 23-15: SPI Master, Frame Slave Connection Diagram
	Figure 23-16: SPI Slave, Frame Master Connection Diagram
	Figure 23-17: SPI Slave, Frame Slave Connection Diagram

	23.3.7 SPI Master Mode Clock Frequency
	Equation 23-1:
	Table 23-4: Sample SCKx Frequencies

	23.4 Audio Protocol Interface Mode
	23.4.1 Master Mode
	Figure 23-18: Master Generating its Own Clock – Output BCLK and LRCK

	23.4.2 Slave Mode
	Figure 23-19: Codec Device as Master Generates Required Clock via External Crystal
	Figure 23-20: Codec Device as Master Derives MCLK from PIC32 Reference Clock Out

	23.4.3 Audio Data Length and Frame Length
	Table 23-5: Audio Data Length versus LRCK Period

	23.4.4 Frame Error/LRCK Errors
	23.4.5 Audio Protocol Modes
	Figure 23-21: SPI Module in Audio Slave Mode – BCLK and WS or LRCK Generated by Master
	Figure 23-22: I2S with 16-bit Data/Channel or 32-bit Data/Channel
	Example 23-3: I2S Slave Mode, 16-bit Channel Data, 32-bit Frame
	Equation 23-2:
	Equation 23-3:
	Equation 23-4:
	Equation 23-5:
	Example 23-4: I2S Master Mode, 256 kbps BCLK, 16-bit Channel Data, 32-bit Frame
	Figure 23-23: Left-Justified with 16-bit Data/Channel or 32-bit Data/Channel
	Figure 23-24: Left-Justified with 16/24-bit Data and 32-bit Channel
	Example 23-5: Left-Justified Slave Mode, 16-bit Channel Data, 32-bit Frame
	Example 23-6: Left-Justified Master Mode, 16-bit Channel Data, 32-bit Frame
	Figure 23-25: Right-Justified with 16-bit Data/Channel or 32-bit Data/Channel
	Figure 23-26: Right-Justified with 16/24-bit Data and 32-bit Channel
	Example 23-7: Right-Justified Slave Mode, 16-bit Channel Data, 32-bit Frame
	Example 23-8: Right-Justified Master Mode, 16-bit Channel Data, 32-bit Frame
	Figure 23-27: PCM/DSP with 16-bit Data/Channel or 32-bit Data/Channel
	Figure 23-28: PCM/DSP with 16/24-bit Data and 32-bit Channel
	Example 23-9: PCM/DSP Slave Mode, 16-bit Channel Data, 32-bit Frame
	Example 23-10: PCM/DSP Master Mode, 16-bit Channel Data, 32-bit Frame

	23.4.6 Audio Protocol Mode Features
	Figure 23-29: SPI Master Clock Generation
	Figure 23-30: SPI Slave and Codec Master – Clock Derived from MCLK
	Example 23-11: I2S Master Mode, 256 kbps BCLK, 16-bit Channel Data, 32-bit Frame

	23.4.7 Mono Mode versus Stereo Mode
	23.4.8 Streaming Data Support and Error Handling

	23.5 Interrupts
	23.5.1 Interrupt Configuration
	Example 23-12: SPI Initialization with Interrupts Enabled Code Example
	Example 23-13: SPI1 ISR Code Example
	Example 23-14: SPI1 ISR Code Example for Devices with Enhanced Buffering Mode

	23.6 Operation in Power-Saving and Debug Modes
	23.6.1 Sleep Mode
	23.6.2 Idle Mode
	23.6.3 Debug Mode

	23.7 Effects of Various Resets
	23.7.1 Device Reset
	23.7.2 Power-on Reset
	23.7.3 Watchdog Timer Reset

	23.8 Peripherals Using SPI Modules
	23.9 Related Application Notes
	23.10 Revision History

	Worldwide Sales and Service

