Embedded signal processing

SE != Esybio != TSI

- Assist patient's body to compensate a handicap
 - Prostesis/Exoskeleton control
 - Hormone regulation
- Symptomatic treatment
 - Deep Brain Stimulation (DBS) for parkinson
 - Epilepsy
- Health IT business
 - Retrieve physiological data from external sources

Constraints

- Power consumption (autonomy / heat)
- Low EM radiations (EMC)
- Robustness / security
 - Less critical for general public devices/apps

Limits

- Technlogical (previous slide)
- Regulations
 - Security rules apply to hardware in contact with patients
 - Software is not concerned
- Ethical

Common architectures

- All embedded :
 - Microcontroler + specific application (input or output)
 - Mixed signal ASIC
 - Expensive / purpose-specific
- e-gadget
 - Wireless sensor + smart [phone | watch | anything]
 - High security risk / not suitable for critic cases

Some of the existing

- Pacemaker
- Cochlear implants
- DBS devices
- Pet microchip implant
- Insulin pump

. . .

What does not exist (commercially) (yet)

- Sensitive feedback
 - For posthetic arms / legs
- Closed loop devices
 - Self adapting stimulation implant /
- Neuroinvasive device
 - Demonstrated efficient on :
 - Weight gain
 - Stress / nervousness
 - Sleep quality
 - Psychic equilibrium

Conception d'un système

- High constraints, need for higly efficient architecture
 - Cost
 - Power consumption
 - Computation latency
- High diversity among individuals
 - High flexibility need (parameters)
 - Self adaptive systems
 - Fault tolerent systems / algorithms

Project objectives :

- Retreive data from biological activity
 - (mostly excitable cell biopotential)
- Provide an architecture that balances :
 - Latency
 - Computation power
 - Adaptation
- Tools :
 - On demand
 - Files are available in 3 fomats :
 - Binary (16b signed) / .csv (text) / matlab

• Discriminate action potentials ...

... by category

Topic #2 : "low spike" detection

- "ICM" signal
- Detect occurrence of smaller spikes, big spikes are the reference...

Topic #3 : heart frequency monitoring

- Rat breath stream measurement.
- Retreive heart rythm

Topic #4 : slow waves measurement

- Pancreatic cells
- Retrieve low freqency signals characteristics

Topic #5 : spike detect. on noisy signal

- Pancreatic cells
- Detect spikes (fig is not representative)

Topic #6 : spikes detection on MEA

- Neuron cultures on microelectrode arrays (low SNR)
- Detect (ugly) spikes

Topic #7 : spike correlation

- Data from spikes detected on MEA ()
- Detect functionnal correlations
 - Retreive who is connect with who ?

Hardware platforms

- Small microcontroler : PIC16F84
 - 8bits, 1 Minstr./s, 68B RAM
 - Migration possible if insuffisance demonstrated
- Big microcontroller (AT91SAM7)
 - 32bits, 48Minstr./s, 128kB RAM
- FPGA (prototyping)
 - 100MHz working frequency
 - No hardware resource limitations

Objective of the project

- Provide a strategy to solve the topic with the hardware assigned
- Time is not sufficient to provide a fully working project !

Expected results

- Digital architecture/strategy
 - No point in getting a working system
- Parameters list
 - Which are fixed ? Tunable ? Auto determined ?
 - Why? How?
- Latency estimation
 - Expressed in computation time / passed samples
- Hardware cost
 - Microcontroller : RAM requirements / working frequency
 - FPGA : Flip-Flops / RAM amount / multipliers

Evaluation

- Defence
 - Defence itself (10mn)
 - Discussion with mates/teacher (15mn)

- This is NOT
 - A project aimed to signal processing : no working device is expected
 - A programming / writing project : only planned resource usage is expected

Data

- www.bornat.fr/enseirbsignals
- Login : csi
- Pwd : ********

• Project attribution

Some recalls (or maybe not)

- Signal processing techniques...
 - Fixed point computation
 - Filters

Data representation

- float/double:
 - 1 mantiss of fixed size (23 to 52 bits)
 - 1 exponent of fixed size (8 to 11 bits)
 - Useful to tell where the "*decimal*" point is
 - Pros :
 - Represent huge or tiny values $(10^{38} \text{ to } 10^{-38})$
 - Cons :
 - Limited number of significant digits
 - Not possible to increment by 1 from 0 to 10¹⁸
 - Complex computing structures
 - No simple logic to perform addition/substraction

Data representation

- integer / long / char :
 - Sequence of bits that represent positive powers of 2
 - Pros :
 - Simple/cheap computation structures (combinatory equations)
 - Precision is absolute
 - Issues :
 - Only suitable for integer values
 - Quantization noise (bad precision for values close to 0)

Data representation

- In between : fixed point
 - Sequence of bits that represent powers of 2 (which can be negative)
 - Pros :
 - (almost) same as integers
 - Much lower quantization noise
 - Issues :
 - Cannot represent values below the value of LSB. (but LSB value is known by design)
 - Complex

Filter

- In digital signal processing: any function that relies on (future or past) samples from a signal
- In real life:

any function that relies on a finite number of (future or past) samples from a signal

• Examples :

•
$$y_n = (x_n + x_{n-1})/2$$
 (low pass)

• $y_n = x_{n-10}$ (shifter)

FIR? IIR?

- FIR :
 - Simplest : $y_n = ax_n + bx_{n-1} + cx_{n-2} + dx_{n-3} + \dots$
 - Generic notation:

$$y_n = a_0 x_n + a_1 x_{n-1} + a_2 x_{n-2} + a_3 x_{n-3} + \dots$$

order = 4

- Can achieve ideal behaviors
- Computationnally expensive

FIR? IIR?

- IIR :
 - Generic notation:

$$y_{n} = a_{0}x_{n} + a_{1}x_{n-1} + a_{2}x_{n-2} + a_{3}x_{n-3} + \dots + b_{1}y_{n-1} + b_{2}y_{n-2} + b_{3}y_{n-3} + \dots$$

- Digitization of analog filters
 - Suffer from the same drawbacks
- Computationnally efficient
- Potentially unstable
 - Mostly, gathering of 2nd order subfilters (cells)